OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A864–A878

Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures

Claiborne O. McPheeters and Edward T. Yu  »View Author Affiliations


Optics Express, Vol. 20, Issue S6, pp. A864-A878 (2012)
http://dx.doi.org/10.1364/OE.20.00A864


View Full Text Article

Enhanced HTML    Acrobat PDF (1776 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simulations of thin film (~2.5 µm thick) InGaAs/GaAs quantum well solar cells with various back side reflective and planar, symmetric scattering structures used for light trapping have been performed using rigorous coupled-wave analysis. Two-dimensional periodic metal/dielectric scattering structures were numerically optimized for Airmass 0 photocurrent generation for each device structure. The simulation results indicate that the absorption spectra of devices with both reflective and scattering structures are largely determined by the Fabry-Perot resonance characteristics of the thin film device structure. The scattering structures substantially increase absorption in the quantum wells at wavelengths longer than the GaAs absorption edge through a combination of coupling to modes of the thin film device structures and by reducing parasitic metal absorption compared to planar metal reflectors. For Airmass 0 illumination and 100% carrier collection, the estimated short-circuit current density of devices with In0.3Ga0.7As/GaAs quantum wells improves by up to 4.6 mA/cm2 (15%) relative to a GaAs homojunction device, with the improvement resulting approximately equally from scattering of light into thin film modes and reduction of metal absorption compared to a planar reflective layer.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.0250) Optoelectronics : Optoelectronics
(350.6050) Other areas of optics : Solar energy
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Photovoltaics

History
Original Manuscript: April 25, 2012
Manuscript Accepted: August 15, 2012
Published: October 8, 2012

Citation
Claiborne O. McPheeters and Edward T. Yu, "Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures," Opt. Express 20, A864-A878 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S6-A864


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junctions solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  2. M. Mazzer, K. W. J. Barnham, I. M. Ballard, A. Bessiere, A. Ioannides, D. C. Johnson, M. C. Lynch, T. N. D. Tibbits, J. S. Roberts, G. Hill, and C. Calder, “Progress in quantum well solar cells,” Thin Solid Films511–512, 76–83 (2006). [CrossRef]
  3. J. G. J. Adams, B. C. Browne, I. M. Ballard, J. P. Connolly, N. L. A. Chan, A. Ioannides, W. Elder, P. N. Stavrinou, K. W. J. Barnham, and N. J. Ekins-Daukes, “Recent results for single-junction and tandem quantum well solar cells,” Prog. Photovolt. Res. Appl.19(7), 865–877 (2011). [CrossRef]
  4. R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett.98(20), 201107 (2011). [CrossRef]
  5. A. Freundlich, A. Fotkatzikis, L. Bhusal, L. Williams, A. Alemu, W. Zhu, J. A. H. Coaquira, A. Feltrin, and G. Radhakrishnan, “III–V dilute nitride-based multi-quantum well solar cell,” J. Cryst. Growth301–302, 993–996 (2007). [CrossRef]
  6. R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, “Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers,” Appl. Phys. Lett.91(24), 243115 (2007). [CrossRef]
  7. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells,” Appl. Phys. Lett.92(12), 123512 (2008). [CrossRef]
  8. C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells,” Appl. Phys. Lett.98(16), 163105 (2011). [CrossRef]
  9. V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells,” Phys. Rev. B78(20), 205321 (2008). [CrossRef]
  10. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science295(5564), 2425–2427 (2002). [CrossRef] [PubMed]
  11. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005). [CrossRef] [PubMed]
  12. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007). [CrossRef]
  13. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express18(26), 27589–27605 (2010). [CrossRef] [PubMed]
  14. G. Wei, K.-T. Shiu, N. C. Giebink, and S. R. Forrest, “Thermodynamic limits of quantum photovoltaic cell efficiency,” Appl. Phys. Lett.91(22), 223507 (2007). [CrossRef]
  15. S. P. Bremner, R. Corkish, and C. B. Honsberg, “Detailed balance efficiency limits with quasi-Fermi level variations,” IEEE Trans. Electron. Dev.46(10), 1932–1939 (1999). [CrossRef]
  16. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997). [CrossRef]
  17. M. Zeman and J. Krc, “Nano-structures for light management in optoelectronic devices,” Proc. 6th Intl. Conf. on Adv. Semicond. Devices and Microsystems, Smolenice, Slovakia, pp. 299–302 (2006).
  18. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett.94(21), 213102 (2009). [CrossRef]
  19. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012). [CrossRef]
  20. E. T. Yu and J. van de Lagemaat, “Photon management for photovoltaics,” MRS Bull.36(06), 424–428 (2011). [CrossRef]
  21. I. Serdiukova, C. Monier, M. F. Vilela, and A. Freundlich, “Critical built-in electric field for an optimum carrier collection in multiquantum well p-i-n diodes,” Appl. Phys. Lett.74(19), 2812–2814 (1999). [CrossRef]
  22. A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys.99(8), 084506 (2006). [CrossRef]
  23. E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films,” Appl. Phys. Lett.51(26), 2222–2224 (1987). [CrossRef]
  24. J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. A. J. Voncken, J. van Deelen, E. Haverkamp, and P. K. Larsen, “Epitaxial lift-off for large area thin film III/V devices,” Phys. Status Solidi202(4), 501–508 (2005) (a). [CrossRef]
  25. D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott, and D. K. Sadana, “High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology,” Appl. Phys. Lett.100(5), 053901 (2012). [CrossRef]
  26. C. O. McPheeters, D. Hu, D. M. Schaadt, and E. T. Yu, “Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells,” J. Opt.14(2), 024007 (2012). [CrossRef]
  27. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Wiley, 1991), Chap. 7.
  28. M. Fox, Optical Properties of Solids (Oxford University Press, 2001), Chap. 1.
  29. RSoft Design Group, DiffractMOD User Guide (v. 3.2), (2011) p. 39.
  30. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989).
  31. C. O. McPheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting, and E. T. Yu, “Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles,” J. Appl. Phys.106(5), 056101 (2009). [CrossRef]
  32. C. J. Hwang, “Optical properties of n-type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys.40(9), 3731–3739 (1969). [CrossRef]
  33. E. Vigil and P. Diaz, “Concentration dependence of the electron diffusion length in p-type GaAs,” Cryst. Res. Technol.19(2), 285–290 (1984). [CrossRef]
  34. H. C. Casey, B. I. Miller, and E. Pinkas, “Variation of minority-carrier diffusion length with carrier concentration in GaAs liquid-phase epitaxial layers,” J. Appl. Phys.44(3), 1281–1287 (1973). [CrossRef]
  35. G. J. Bauhuis, P. Mulder, J. J. Schermer, E. J. Haverkamp, J. van Deelen, and P. K. Larsen, “High efficiency thin film GaAs solar cells with improved radiation hardness,” Proc. 20th European Photovolt. Solar Energy Conf., pp. 468–471 (2005).
  36. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93(9), 1488–1491 (2009). [CrossRef]
  37. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985). [CrossRef]
  38. S. Adachi, “Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb,” Phys. Rev. B Condens. Matter35(14), 7454–7463 (1987). [CrossRef] [PubMed]
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  40. B. J. Soller and D. G. Hall, “Energy transfer at optical frequencies to silicon-based waveguiding structures,” J. Opt. Soc. Am. A18(10), 2577–2584 (2001). [CrossRef] [PubMed]
  41. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett.93(9), 091107 (2008). [CrossRef]
  42. J. Zou, D. J. H. Cockayne, and B. F. Usher, “Misfit dislocations and critical thickness in InGaAs/GaAs heterostructure systems,” J. Appl. Phys.73(2), 619–626 (1993). [CrossRef]
  43. Y. C. Chen, P. K. Bhattacharya, and J. Singh, “Accurate determination of misfit strain, layer thickness, and critical layer thickness in ultrathin buried strained InGaAs/GaAs layer by x-ray diffraction,” J. Vac. Sci. Technol. B10(2), 769–771 (1992). [CrossRef]
  44. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  45. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2006) p.206.
  46. A. K. Saxena, “The conduction band structure and deep levels in Ga1-xAlxAs alloys from a high-pressure experiment,” J. Phys. Chem.13, 4323–4334 (1980).
  47. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  48. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  49. A. Luque, A. Martí, and A. J. Nozik, “Solar cells based on quantum dots: multiple exciton generation and intermediate bands,” MRS Bull.32(03), 236–241 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited