OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A879–A887

Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices

Sean K. W. MacDougall, Aruna Ivaturi, Jose Marques-Hueso, Karl W. Krämer, and Bryce S. Richards  »View Author Affiliations

Optics Express, Vol. 20, Issue S6, pp. A879-A887 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The upconversion photoluminescent quantum yield (PLQY) of erbium-doped hexagonal sodium yttrium fluoride (β-NaYF4: 10% Er3+) was measured under broadband excitation with full width half maxima ranging from 12 to 80 nm. A novel method was developed to increase the bandwidth of excitation, while remaining independent of power via normalization to the air mass 1.5 direct solar spectrum. The measurements reveal that by broadening the excitation spectrum a higher PLQY can be achieved at lower solar concentrations. The highest PLQY of 16.2 ± 0.5% was achieved at 2270 ± 100 mW mm−2 and is the highest ever measured.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.5690) Materials : Rare-earth-doped materials
(190.7220) Nonlinear optics : Upconversion
(250.5230) Optoelectronics : Photoluminescence
(300.6420) Spectroscopy : Spectroscopy, nonlinear

ToC Category:

Original Manuscript: July 5, 2012
Revised Manuscript: September 10, 2012
Manuscript Accepted: September 18, 2012
Published: October 9, 2012

Sean K. W. MacDougall, Aruna Ivaturi, Jose Marques-Hueso, Karl W. Krämer, and Bryce S. Richards, "Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices," Opt. Express 20, A879-A887 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010). [CrossRef] [PubMed]
  2. Z. Li, Y. Zhang, S. Jiang, “Multicolor core/shell-structured upconversion fluorescent nanoparticles,” Adv. Mater. 20(24), 4765–4769 (2008). [CrossRef]
  3. P. Gibart, F. Auzel, J.-C. Guillaume, K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys. 35(8), 4401–4402 (1996). [CrossRef]
  4. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005). [CrossRef]
  5. J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010). [CrossRef]
  6. W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]
  7. A. Shalav, B. S. Richards, M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007). [CrossRef]
  8. B. S. Richards, A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron. Dev. 54(10), 2679–2684 (2007). [CrossRef]
  9. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Bruggemann, K. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010). [CrossRef]
  10. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004). [CrossRef] [PubMed]
  11. S. Ivanova, F. Pellé, “Strong 1.53 µm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” J. Opt. Soc. Am. B 26(10), 1930–1938 (2009). [CrossRef]
  12. S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, G. Wegner, “Up-conversion fluorescence: noncoherent excitation by sunlight,” Phys. Rev. Lett. 97(14), 143903 (2006). [CrossRef] [PubMed]
  13. S. Baluschev, V. Yakutkin, T. Miteva, G. Wegner, T. Roberts, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, A. Cheprakov, “A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum,” New J. Phys. 10(1), 013007 (2008). [CrossRef]
  14. J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells 95(7), 1960–1963 (2011). [CrossRef]
  15. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004). [CrossRef]
  16. J. Ballato, S. H. Foulger, J. D. W. Smith., “Optical properties of perfluorocyclobutyl polymers. II. Theoretical and experimental attenuation,” J. Opt. Soc. Am. B 21(5), 958–967 (2004). [CrossRef]
  17. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Krämer, C. Reinhard, H. U. Güdel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005). [CrossRef]
  18. Y. Y. Cheng, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, T. W. Schmidt, “On the efficiency limit of triplet-triplet annihilation for photochemical upconversion,” Phys. Chem. Chem. Phys. 12(1), 66–71 (2009). [CrossRef] [PubMed]
  19. M. A. Green, ed., “Solar Cells: Operating Principles: Technology and System Applications,” (The University of New South Wales, Kensington, NSW 2033, 1982).
  20. A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Sol. Cells 94(11), 1923–1926 (2010). [CrossRef]
  21. J. C. Goldschmidt, P. Löper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Krämer, and D. Biner, “Advanced upconverter systems with spectral and geometric concentration for high upconversion efficiencies,” Proc. of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2008), pp. 307–311.
  22. M. A. Schreuder, J. D. Gosnell, N. J. Smith, M. R. Warnement, S. M. Weiss, S. J. Rosenthal, “Encapsulated white-light CdSe nanocrystals as nanophosphors for solid-state lighting,” J. Mater. Chem. 18(9), 970–975 (2008). [CrossRef]
  23. C. M. Johnson, P. J. Reece, G. J. Conibeer, “Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals,” Opt. Lett. 36(20), 3990–3992 (2011). [CrossRef] [PubMed]
  24. E. Verhagen, L. Kuipers, A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express 17(17), 14586–14598 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited