OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A888–A897

Effect of dielectric Bragg grating nanostructuring on dye sensitized solar cells

Daniele Barettin, Aldo Di Carlo, Roberta De Angelis, Mauro Casalboni, and Paolo Prosposito  »View Author Affiliations


Optics Express, Vol. 20, Issue S6, pp. A888-A897 (2012)
http://dx.doi.org/10.1364/OE.20.00A888


View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a theoretical investigation on the influence of different wavelength scale periodic grating architectures on dye sensitized solar cell (DSC). A broadband absorption enhancement is expected in such solar cells thanks to diffraction effects produced by these structures. Their optimal size has been analyzed in terms of pitch grating, height and position along the solar cell layers. Numerical simulations indicate that nanostructuring the interface between the active and the electrolyte layer by integrating a dielectric grating produces an absorption enhancement of 23.4%. The presented results have been also evaluated in view of feasible realistic structures compatible with low cost soft lithographic techniques.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photovoltaics

History
Original Manuscript: August 14, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 20, 2012
Published: October 9, 2012

Citation
Daniele Barettin, Aldo Di Carlo, Roberta De Angelis, Mauro Casalboni, and Paolo Prosposito, "Effect of dielectric Bragg grating nanostructuring on dye sensitized solar cells," Opt. Express 20, A888-A897 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S6-A888


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. O’Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991). [CrossRef]
  2. A. Kay, M. Gratzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder,” Sol. Energy Mater. Sol. Cells 44(1), 99–117 (1996). [CrossRef]
  3. F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Grätzel, “Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells,” J. Am. Chem. Soc. 130(32), 10720–10728 (2008). [CrossRef] [PubMed]
  4. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, M. Grätzel, “Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells,” ACS Nano 3(10), 3103–3109 (2009). [CrossRef] [PubMed]
  5. M. A. Green, K. Emery, D. L. King, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 28),” Prog. Photovolt. Res. Appl. 14(5), 455–461 (2006). [CrossRef]
  6. B. E. Hardin, H. J. Snaith, M. D. McGehee, “The renaissance of dye-sensitized solar cells,” Nat. Photonics 6(3), 162–169 (2012). [CrossRef]
  7. SOLARONIX, www.solaronix.com .
  8. J. R. Durrant, S. A. Haque, E. Palomares, “Towards optimization of electron transfer processes in Dye sensitized solar cells,” Coord. Chem. Rev. 248(13-14), 1247–1257 (2004). [CrossRef]
  9. M. Nedelcu, J. Lee, E. J. W. Crossland, S. C. Warren, M. C. Orilall, S. Guldin, S. Hüttner, C. Ducati, D. Eder, U. Wiesner, U. Steiner, H. J. Snaith, “Block copolymer directed synthesis of mesoporous TiO2 for dye-sensitized solar cells,” Soft Matter 5(1), 134–139 (2008). [CrossRef]
  10. F. Inakazu, Y. Noma, Y. Ogomi, S. Hayase, “Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength,” Appl. Phys. Lett. 93(9), 093304–1 (2008). [CrossRef]
  11. Z. S. Wang, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, H. Arakawa, H. Sugihara, “Photophysical and (photo)electrochemical properties of a coumarin dye,” J. Phys. Chem. B 109(9), 3907–3914 (2005). [CrossRef] [PubMed]
  12. J. H. Yum, S. R. Jang, P. Walter, T. Geiger, F. Nüesch, S. Kim, J. Ko, M. Grätzel, M. K. Nazeeruddin, “Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers,” Chem. Commun. (Camb.) 44(44), 4680–4682 (2007). [CrossRef] [PubMed]
  13. M. Gorlov, L. Kloo, “Ionic liquid electrolytes for dye-sensitized solar cells,” Dalton Trans. 20(20), 2655–2666 (2008). [CrossRef] [PubMed]
  14. S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, “Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells,” Chem. Commun. (Camb.) 15(15), 2011–2013 (2005). [CrossRef] [PubMed]
  15. J. R. Nagel, M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express 18(S2Suppl 2), A139–A146 (2010). [CrossRef] [PubMed]
  16. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003). [CrossRef] [PubMed]
  17. A. Mihi, M. E. Calvo, J. A. Anta, H. Miguez, “Spectral response of opal based dye-sensitized solar cells,” J. Phys. Chem. C 112(1), 13–17 (2008). [CrossRef]
  18. S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012). [CrossRef]
  19. K. Q. Le, A. Abass, B. Maes, P. Bienstman, A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(1), A39–A50 (2012). [CrossRef] [PubMed]
  20. Z. Yu, A. Raman, S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S1Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  21. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimesional grating,” Opt. Express 19(1), 128–140 (2011). [CrossRef]
  22. D. Colonna, L. Dominici, D. D’Ercole, A. Brunetti, F. Michelotti, T. M. Brown, A. Reale, A. Di Carlo, “Photocurrent enhancement of dye solar cells by efficient ligth management,” Superlattices Microstruct. 47(1), 197–201 (2010). [CrossRef]
  23. L. Dominici, L. Vesce, D. Colonna, F. Michelotti, T. M. Brown, A. Reale, A. Di Carlo, “Angular and prism coupling refractive enhancement in dye solar cells,” Appl. Phys. Lett. 96(10), 103302 (2010). [CrossRef]
  24. S. Rühle, S. Greenwald, E. Koren, A. Zaban, “Optical waveguide enhanced photovoltaics,” Opt. Express 16(26), 21801–21806 (2008). [CrossRef] [PubMed]
  25. A. Raman, Z. Yu, S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express 19(20), 19015–19026 (2011). [CrossRef] [PubMed]
  26. COMSOLTM, www.comsol.com .
  27. Center for Hybrid and Organic Solar Energy (CHOSE), www.chose.uniroma2.it .
  28. P. Prosposito, M. Casalboni, E. Orsini, C. Palazzesi, F. Stella, “UV-Nanoimprinting lithography of Bragg Gratings on hybrid sol-gel based channel waveguides,” Solid State Sci. 12(11), 1886–1889 (2010). [CrossRef]
  29. G. Brusatin, G. Della Giustina, M. Guglielmi, M. Casalboni, P. Prosposito, S. Schutzmann, G. Roma, “Direct pattern of photocurable glycidoxypropyltrimethoxysilane based sol-gel hybrid waveguides for photonic applications,” Mater. Sci. and Engineer. C 27(5-8), 1022–1025 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited