OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A924–A931

Light induced fluidic waveguide coupling

Volker Zagolla, Eric Tremblay, and Christophe Moser  »View Author Affiliations

Optics Express, Vol. 20, Issue S6, pp. A924-A931 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1662 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the development of an opto-fluidic waveguide coupling mechanism for planar solar concentration. This mechanism is self-adaptive and light-responsive to efficiently maintain waveguide coupling and concentration independent of incoming light’s direction. Vapor bubbles are generated inside a planar, liquid waveguide using infrared light on an infrared absorbing glass. Visible light focused onto the bubble is then reflected by total internal reflection (TIR) at the liquid-gas interface and coupled into the waveguide. Vapor bubbles inside the liquid are trapped by a thermal effect and are shown to self-track the location of the infrared focus. Experimentally we show an optical to optical waveguide coupling efficiency of 40% using laser light through a single commercial lens. Optical simulations indicate that coupling efficiency > 90% is possible with custom optics.

© 2012 OSA

OCIS Codes
(220.1770) Optical design and fabrication : Concentrators
(230.7390) Optical devices : Waveguides, planar
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Concentrators

Original Manuscript: July 11, 2012
Revised Manuscript: September 26, 2012
Manuscript Accepted: October 7, 2012
Published: October 15, 2012

Volker Zagolla, Eric Tremblay, and Christophe Moser, "Light induced fluidic waveguide coupling," Opt. Express 20, A924-A931 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Benitez and J. C. Minano, “Concentrator optics for the next-generation photovoltaics,” in Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, A. Marti and A. Luque, eds. (Taylor & Francis, CRC Press, London, 2004) chap. 13. [CrossRef]
  2. H. Tabor, “Stationary mirror systems for solar collectors,” Sol. Energy 2, 27–33 (1958). [CrossRef]
  3. H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev. 13, 1800–1818 (2009). [CrossRef]
  4. R. Reisfeld and S. Neuman, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature 274 (5667), 144–145 (1978). [CrossRef]
  5. K. Baker, J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Reactive self-tracking solar concentrators: concept, design, and initial materials characterization,” Appl. Opt. 51, 1086–1094 (2012). [CrossRef] [PubMed]
  6. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 1122–1133 (2010). [CrossRef] [PubMed]
  7. P. Schmaelzle and G. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” MRS Fall Meeting & Exhibit (2010).
  8. J. Castro, D. Zhang, B. Myer, and R. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49, 858–870 (2010). [CrossRef] [PubMed]
  9. R. Reisfeld, “New developments in luminescence for solar energy utilization,” Opt. Mater. 32(9), 850–856 (2010). [CrossRef]
  10. R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007). [CrossRef]
  11. Teledyne Scientific & Imaging, “Optofluidic solar concentrators,” ARPA (2010).
  12. M. J. Clifford and D. Eastwood, “Design of a novel passive solar tracker,” Sol. Energy 77(3), 269–280 (2004). [CrossRef]
  13. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11, 1389–1395 (2011). [CrossRef] [PubMed]
  14. A. Ohta, A. Jamshidi, J. Valley, H. Hsu, and M. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett. 91, 074103 (2007). [CrossRef]
  15. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4), A673–A685 (2011). [CrossRef] [PubMed]
  16. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006). [CrossRef] [PubMed]
  17. Schott BG39 “ http://www.schott.com/advanced_optics/english/download/schott_bandpass_bg39_2008_e.pdf ”.
  18. W. Hu, K. Ishii, and A. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett. 99, 094103 (2011). [CrossRef]
  19. F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19, A207–A218 (2011). [CrossRef] [PubMed]
  20. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51, 6117–6124 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2871 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited