OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A954–A963

Spectral aspects of cavity tuned absorption in organic photovoltaic films

Brent Valle, Stephen Loser, Jonathan W. Hennek, Vincent DeGeorge, Courtney Klosterman, James H. Andrews, Kenneth D. Singer, and Tobin J. Marks  »View Author Affiliations


Optics Express, Vol. 20, Issue S6, pp. A954-A963 (2012)
http://dx.doi.org/10.1364/OE.20.00A954


View Full Text Article

Enhanced HTML    Acrobat PDF (3813 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Concentration of light and infrared capture are two favored approaches for increasing the power conversion efficiency (PCE) of photovoltaic devices. Using optical transfer matrix formalism, we model the absorption of organic photovoltaic films as a function of active layer thickness and incident wavelength. In our simulations we consider the absorption in the optical cavity formed by the polymer bulk heterojunction active layer (AL) between the aluminum cathode and indium tin oxide (ITO) anode. We find that optical absorption can be finely tuned by adjusting the ITO thickness within a relatively narrow range, thus eliminating the need for a separate optical spacer. We also observe distinct spectral effects due to frequency pulling which results in enhanced long-wavelength absorption. Spectral sculpting can be carried out by cavity design without affecting the open circuit voltage as the spectral shifts are purely optical effects. We have experimentally verified aspects of our modeling and suggest methods to improve device design.

© 2012 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(310.6188) Thin films : Spectral properties

ToC Category:
Photovoltaics

History
Original Manuscript: October 1, 2012
Manuscript Accepted: October 9, 2012
Published: October 22, 2012

Citation
Brent Valle, Stephen Loser, Jonathan W. Hennek, Vincent DeGeorge, Courtney Klosterman, James H. Andrews, Kenneth D. Singer, and Tobin J. Marks, "Spectral aspects of cavity tuned absorption in organic photovoltaic films," Opt. Express 20, A954-A963 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S6-A954


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells,” J. Am. Chem. Soc.134(24), 10071–10079 (2012). [CrossRef] [PubMed]
  2. P. T. Boudreault, A. Najari, and M. Leclerc, “Processable low-bandgap polymers for photovoltaic applications,” Chem. Mater.23(3), 456–469 (2011). [CrossRef]
  3. J. Hou, H.-Y. Chen, S. Zhang, G. Li, and Y. Yang, “Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole,” J. Am. Chem. Soc.130(48), 16144–16145 (2008). [CrossRef] [PubMed]
  4. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007). [CrossRef] [PubMed]
  5. C. Winder and N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells,” J. Mater. Chem.14(7), 1077–1086 (2004). [CrossRef]
  6. Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett.84(10), 1653–1655 (2004). [CrossRef]
  7. N. Zhou, X. Guo, R. P. Ortiz, S. Li, S. Zhang, R. P. H. Chang, A. Facchetti, and T. J. Marks, “Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2242–2248 (2012). [CrossRef] [PubMed]
  8. Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, and Y. Chen, “High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit,” Adv. Mater. (Deerfield Beach Fla.)23(45), 5387–5391 (2011). [CrossRef] [PubMed]
  9. M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, “Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices,” J. Am. Chem. Soc.131(26), 9281–9286 (2009). [CrossRef] [PubMed]
  10. H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009). [CrossRef]
  11. A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang, M. R. Andersson, and O. Inganäs, “A new donor–acceptor–donor polyfluorene copolymer with balanced electron and hole mobility,” Adv. Funct. Mater.17(18), 3836–3842 (2007). [CrossRef]
  12. P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011). [CrossRef]
  13. M. Girtan and M. Rusu, “Role of ITO and PEDOT:PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells,” Sol. Energy Mater. Sol. Cells94(3), 446–450 (2010). [CrossRef]
  14. B. Zimmermann, U. Würfel, and M. Niggemann, “Longterm stability of efficient inverted P3HT:PCBM solar cells,” Sol. Energy Mater. Sol. Cells93(4), 491–496 (2009). [CrossRef]
  15. M. Jørgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Sol. Energy Mater. Sol. Cells92(7), 686–714 (2008). [CrossRef]
  16. P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air,” Sol. Energy Mater. Sol. Cells92(11), 1416–1420 (2008). [CrossRef]
  17. F. C. Krebs and H. Spanggaard, “Significant improvement of polymer solar cell stability,” Chem. Mater.17(21), 5235–5237 (2005). [CrossRef]
  18. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005). [CrossRef]
  19. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995). [CrossRef]
  20. S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, “Charge formation, recombination, and sweep-out dynamics in organic solar cells,” Adv. Funct. Mater.22(6), 1116–1128 (2012). [CrossRef]
  21. J. D. Servaites, M. A. Ratner, and T. J. Marks, “Organic solar cells: A new look at traditional models,” Energy Environ. Sci.4(11), 4410–4422 (2011). [CrossRef]
  22. A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, “Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials,” Phys. Rev. Lett.94(17), 176806 (2005). [CrossRef] [PubMed]
  23. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487–496 (1999). [CrossRef]
  24. D. W. Sievers, V. Shrotriya, and Y. Yang, “Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells,” J. Appl. Phys.100(11), 114509 (2006). [CrossRef]
  25. J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.)18(5), 572–576 (2006). [CrossRef]
  26. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007). [CrossRef]
  27. N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(6), 728–732 (2012). [CrossRef] [PubMed]
  28. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett.9(7), 2742–2746 (2009). [CrossRef] [PubMed]
  29. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006). [CrossRef]
  30. C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells85, 115–124 (2005).
  31. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983). [CrossRef]
  32. I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express20(S5), A729–A739 (2012). [CrossRef]
  33. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  34. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett.93(11), 113108 (2008). [CrossRef]
  35. L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. (Deerfield Beach Fla.)12(3), 189–195 (2000). [CrossRef]
  36. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987). [CrossRef]
  37. E. Yablonovitch and D. G. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982). [CrossRef]
  38. V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58(7), 3730–3740 (1998). [CrossRef]
  39. L. J. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett.64(19), 2486–2488 (1994). [CrossRef]
  40. T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo‐ and electroluminescent devices with double mirrors,” Appl. Phys. Lett.63(5), 594–595 (1993). [CrossRef]
  41. H. K. Kim, S.-H. Cho, J. R. Oh, Y.-H. Lee, J.-H. Lee, J.-G. Lee, S.-K. Kim, Y.-I. Park, J.-W. Park, and Y. R. Do, “Deep blue, efficient, moderate microcavity organic light-emitting diodes,” Org. Electron.11(1), 137–145 (2010). [CrossRef]
  42. J. Hou, J. Wu, Z. Xie, and L. Wang, “Realization of blue, green and red emission from top-emitting white organic light-emitting diodes with exterior tunable optical films,” Org. Electron.9(6), 959–963 (2008). [CrossRef]
  43. Y. Long, “Improving optical performance of inverted organic solar cells by microcavity effect,” Appl. Phys. Lett.95(19), 193301 (2009). [CrossRef]
  44. Y. Long, “Improving optical performance of low bandgap polymer solar cells by the two-mode moderate microcavity,” Appl. Phys. Lett.98(3), 033301 (2011). [CrossRef]
  45. P. W. Milonni and J. H. Eberly, Lasers, Wiley-Interscience, New York, USA pp. 342–347 (1998).
  46. Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S.-T. Ho, “High-performance organic light-emitting diodes using ITO Anodes grown on plastic by room- temperature ion-assisted deposition,” Adv. Mater. (Deerfield Beach Fla.)16(4), 321–324 (2004). [CrossRef]
  47. Manuscript in Preparation
  48. B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B39(3), 165–170 (1986). [CrossRef]
  49. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt.41(19), 3978–3987 (2002). [CrossRef] [PubMed]
  50. Y. Liang and L. Yu, “A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance,” Acc. Chem. Res.43(9), 1227–1236 (2010). [CrossRef] [PubMed]
  51. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010). [CrossRef] [PubMed]
  52. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012). [CrossRef]
  53. Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties,” J. Am. Chem. Soc.131(22), 7792–7799 (2009). [CrossRef] [PubMed]
  54. H. Cheun, J. D. Berrigan, Y. Zhou, M. Fenoll, J. Shim, C. Fuentes-Hernandez, K. H. Sandhage, and B. Kippelen, “Roles of thermally-induced vertical phase segregation and crystallization on the photovoltaic performance of bulk heterojunction inverted polymer solar cells,” Energy Environ. Sci.4(9), 3456–3460 (2011). [CrossRef]
  55. J. Moulé, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys.100(9), 094503 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited