OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A991–A996

Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films

Dong-Ju Seo, Jae-Phil Shim, Sang-Bae Choi, Tae Hoon Seo, Eun-Kyung Suh, and Dong-Seon Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue S6, pp. A991-A996 (2012)
http://dx.doi.org/10.1364/OE.20.00A991


View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

InGaN based MQW solar cells have been fabricated with 4 different transparent top electrode structures: (1)- ITO 200 nm, (2)-ITO nano dots only, (3)-ITO nano dots on ITO 50 nm and (4)-ITO nano dots on ITO 100 nm. The solar cell with the ITO 50 nm on ITO nano dots under AM 1.5 conditions showed the best results: 2.3 V for Voc, 0.69 mA/cm2 for Jsc, 41.8% for peak EQE, and 0.91% for conversion efficiency. Efficiency improvement was possible due to the decreased reflectance achieved by the ITO nano dots covered with an ITO film with optimized thickness.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(310.6860) Thin films : Thin films, optical properties
(350.6050) Other areas of optics : Solar energy
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.6645) Optics at surfaces : Surface differential reflectance

ToC Category:
Photovoltaics

History
Original Manuscript: July 26, 2012
Revised Manuscript: September 3, 2012
Manuscript Accepted: October 7, 2012
Published: November 1, 2012

Citation
Dong-Ju Seo, Jae-Phil Shim, Sang-Bae Choi, Tae Hoon Seo, Eun-Kyung Suh, and Dong-Seon Lee, "Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films," Opt. Express 20, A991-A996 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S6-A991


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, M. Senoh, N. Iwasa, and S. I. Nagahama, “High power InGaN single quantum well structure blue and violet light emitting diodes,” Appl. Phys. Lett.67(13), 1868–1870 (1995). [CrossRef]
  2. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates,” Appl. Phys. Lett.72(16), 2014–2016 (1998). [CrossRef]
  3. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett.91(13), 132117 (2007). [CrossRef]
  4. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93(14), 143502 (2008). [CrossRef]
  5. E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, St. Keller, St. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98(2), 021102 (2011). [CrossRef]
  6. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1-xGaxN alloys,” Appl. Phys. Lett.80(25), 4741–4743 (2002). [CrossRef]
  7. S. I. Na, D. S. Han, S. S. Kim, J. H. Lim, J. Y. Kim, and S. J. Park, “Surface texturing of p-GaN layer for efficient GaN LED by maskless selective etching,” Phys. Status Solidi2(7c), 2916–2919 (2005). [CrossRef]
  8. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Denbaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004). [CrossRef]
  9. R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN based light emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett.86(22), 221101 (2005). [CrossRef]
  10. D. S. Leem, J. H. Cho, C. S. Sone, Y. J. Park, and T. Y. Seong, “Light-output enhancement of GaN-based light-emitting diodes by using hole-patterned transparent indium tin oxide electrodes,” J. Appl. Phys.98(7), 076107 (2005). [CrossRef]
  11. S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, and J. K. Sheu, “Nitride based light emitting diodes with indium tin oxide electrode patterned by imprint lithography,” Appl. Phys. Lett.91(1), 013504 (2007). [CrossRef]
  12. R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett.30(7), 724–726 (2009). [CrossRef]
  13. S. Y. Bae, J. P. Shim, D. S. Lee, S. R. Jeon, and G. Namkoong, “Improved photovoltaic effects of a vertical-type InGaN/GaN multiple quantum well solar cell,” Jpn. J. Appl. Phys.50(9), 092301 (2011). [CrossRef]
  14. X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul, L. Zhang, R. Hickman, and J. M. Van Hove, “Electrical effects of plasma damage in p-GaN,” Appl. Phys. Lett.75(17), 2569–2571 (1999). [CrossRef]
  15. Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, C. W. Kuo, and S. C. Chen, “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts,” Solid-State Electron.47(5), 849–853 (2003). [CrossRef]
  16. J. P. Shim, S. R. Jeon, Y. K. Jeong, and D. S. Lee, “Improved efficiency by using transparent contact layers in InGaN based p-i-n solar cells,” IEEE Electron Device Lett.31(10), 1140–1142 (2010). [CrossRef]
  17. H. Kim, J. S. Horwitz, G. Kushto, A. Pique´, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, “Effect of film thickness on the properties of indium tin oxide thin films,” J. Appl. Phys.88(10), 6021–6025 (2000). [CrossRef]
  18. J. P. Shim, M. H. Choe, S. R. Jeon, D. J. Seo, T. H. Lee, and D. S. Lee, “InGaN-based p-i-n solar cells with graphene electrodes,” Appl. Phys. Express4(5), 052302 (2011). [CrossRef]
  19. S. M. Huang, Y. Yao, C. Jin, Z. Sun, and Z. J. Dong, “Enhancement of the light output of GaN-based light-emitting diodes using surface-textured indium-tin-oxide transparent ohmic contacts,” Displays29(3), 254–259 (2008). [CrossRef]
  20. D. S. Leem, T. H. Lee, and T. Y. Seong, “Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching,” Solid-State Electron.51(5), 793–796 (2007). [CrossRef]
  21. T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, H. Kim, Y. R. Choi, E. K. Suh, T. V. Cuong, V. H. Pham, J. S. Chung, and E. J. Kim, “Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode,” Appl. Phys. Lett.98(25), 251114 (2011). [CrossRef]
  22. B. R. Jampana, A. G. Melton, M. Jamil, N. N. Faleev, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Design and realization of wide-band-gap(~2.67ev) InGaN p-n junction solar cell,” IEEE Electron Device Lett.31(1), 32–34 (2010). [CrossRef]
  23. J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett.30(3), 225–227 (2009). [CrossRef]
  24. C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. Denbaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett.98(24), 243507 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited