OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3170–3181

Mode resolved bend loss in few-mode optical fibers

Christian Schulze, Adrian Lorenz, Daniel Flamm, Alexander Hartung, Siegmund Schröter, Hartmut Bartelt, and Michael Duparré  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3170-3181 (2013)
http://dx.doi.org/10.1364/OE.21.003170


View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel approach to directly measure the bend loss of individual modes in few-mode fibers based on the correlation filter technique. This technique benefits from a computer-generated hologram performing a modal decomposition, yielding the optical power of all propagating modes in the bent fiber. Results are compared with rigorous loss simulations and with common loss formulas for step-index fibers revealing high measurement fidelity. To the best of our knowledge, we demonstrate for the first time an experimental loss discrimination between index-degenerated modes.

© 2013 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 12, 2012
Revised Manuscript: January 12, 2013
Manuscript Accepted: January 14, 2013
Published: February 1, 2013

Citation
Christian Schulze, Adrian Lorenz, Daniel Flamm, Alexander Hartung, Siegmund Schröter, Hartmut Bartelt, and Michael Duparré, "Mode resolved bend loss in few-mode optical fibers," Opt. Express 21, 3170-3181 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3170


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25, 442–444 (2000). [CrossRef]
  2. F. D. Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “Diffraction-limited, 300-kw peak-power pulses from a coiled multimode fiber amplifier,” Opt. Lett.27, 518–520 (2002). [CrossRef]
  3. Z. Wang, N. Zhang, and X.-C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express19, 482–492 (2011). [CrossRef] [PubMed]
  4. S. V. Karpeev, V. S. Pavelyev, V. A. Soifer, L. L. Doskolovich, M. R. Duparré, and B. Luedge, “Mode multiplexing by diffractive optical elements in optical telecommunication,” Proc. SPIE 5480, Laser Optics 2003: Diode Lasers and Telecommunication Systems, 153 (2004), doi:. [CrossRef]
  5. S. V. Karpeev, V. S. Pavelyev, V. A. Soifer, S. N. Khonina, M. Duparré, B. Luedge, and J. Turunen, “Transverse mode multiplexing by diffractive optical elements,” Proc. SPIE 5854, Optical Technologies for Telecommunications, 1 (2005), doi:. [CrossRef]
  6. R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express15, 15674–15701 (2007). [CrossRef] [PubMed]
  7. R. Schermer and J. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quant. Electron.43, 899–909 (2007). [CrossRef]
  8. D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,” Appl. Opt.11, 2506–2513 (1972). [CrossRef] [PubMed]
  9. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am.66, 216–220 (1976). [CrossRef]
  10. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am.66, 311–320 (1976). [CrossRef]
  11. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt.21, 4208–4213 (1982). [CrossRef] [PubMed]
  12. M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quant. Electron.11, 75–83 (1975). [CrossRef]
  13. A. Harris and P. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol.4, 34–40 (1986). [CrossRef]
  14. L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol.15, 671–679 (1997). [CrossRef]
  15. N. Shibata and M. Tsubokawa, “Bending loss measurement of LP11 mode in quasi-single-mode operation region,” Electron. Lett.21, 1042–1043 (1985). [CrossRef]
  16. D. N. Schimpf, R. A. Barankov, and S. Ramachandran, “Cross-correlated (C2) imaging of fiber and waveguide modes,” Opt. Express19, 13008–13019 (2011) [CrossRef] [PubMed]
  17. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express16, 7233–7243 (2008) [CrossRef] [PubMed]
  18. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14, 69–81 (2006). [CrossRef] [PubMed]
  19. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett.32, 748–750 (2007). [CrossRef] [PubMed]
  20. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt.19, 2000–2006 (1980). [CrossRef] [PubMed]
  21. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys.30, 779 –788 (1959). [CrossRef]
  22. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.5, 273–275 (1980). [CrossRef] [PubMed]
  23. F. Pockels, “Über die Änderung des optischen Verhaltens verschiedener Gläser durch elastische Deformation,” Ann. Phys.312, 745–771 (1902). [CrossRef]
  24. H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol.10, 544–551 (1992). [CrossRef]
  25. J. Sakai, “Simplified bending loss formula for single-mode optical fibers,” Appl. Opt.18, 951–952 (1979). [CrossRef] [PubMed]
  26. K. Okamoto, Fundamentals of Optical Waveguides, Second Edition (Optics and Photonics Series) (Academic Press, 2005).
  27. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114, 185–200 (1994). [CrossRef]
  28. J. W. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt.23, 4486–4493 (1984). [CrossRef] [PubMed]
  29. IEC, “Optical fibres - Part 1-44: Measurement methods and test procedures - Cut-off wavelength (IEC 60793-1-44:2011),” (2012).
  30. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1996).
  31. R. Kashyap, Fiber Bragg Gratings (Optics and Photonics) (Academic Press, 1999).
  32. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express17, 9347–9356 (2009). [CrossRef] [PubMed]
  33. M. A. Golub, A. M. Prokhorov, I. N. Sisakian, and V. A. Soifer, “Synthesis of spatial filters for investigation of the transverse mode composition of coherent radiation,” Sov. J. Quantum Electron.9, 1866–1868 (1982).
  34. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, and M. Duparré, “Measuring the spatial polarization distribution of multimode beams emerging from passive step-index large-mode-area fibers,” Opt. Lett.35, 3429–3431 (2010). [CrossRef] [PubMed]
  35. D. Flamm, C. Schulze, R. Brüning, O. A. Schmidt, T. Kaiser, S. Schröter, and M. Duparré, “Fast M2 measurement for fiber beams based on modal analysis,” Appl. Opt.51, 987–993 (2012). [CrossRef] [PubMed]
  36. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré, “Mode analysis with a spatial light modulator as a correlation filter,” Opt. Lett.37, 2478–2480 (2012). [CrossRef] [PubMed]
  37. C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express20, 19714–19725 (2012). [CrossRef] [PubMed]
  38. W.-H. Lee, “Binary computer-generated holograms,” Appl. Opt.18, 3661–3669 (1979). [CrossRef] [PubMed]
  39. T. Grosjean, A. Sabac, and D. Courjon, “A versatile and stable device allowing the efficient generation of beams with radial, azimuthal or hybrid polarizations,” Opt. Commun.252, 12–21 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPEG (174 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited