OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 5701–5714

Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy

Pinhas Girshovitz and Natan T. Shaked  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 5701-5714 (2013)
http://dx.doi.org/10.1364/OE.21.005701


View Full Text Article

Enhanced HTML    Acrobat PDF (2502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple-to-align, highly-portable interferometer, which is able to capture wide-field, off-axis interference patterns from transparent samples under low-coherence illumination. This small-dimensions and low-cost device can be connected to the output of a transmission microscope illuminated by a low-coherence source and measure sub-nanometric optical thickness changes in a label-free manner. In contrast to our previously published design, the τ interferometer, the new design is able to fully operate in an off-axis holographic geometry, where the interference fringes have high spatial frequency, and the interference area is limited only by the coherence length of the source, and thus it enables to easily obtain high-quality quantitative images of static and dynamic samples. We present several applications for the new design including nondestructive optical testing of transparent microscopic elements with nanometric thickness and live-cell imaging.

© 2013 OSA

OCIS Codes
(090.2880) Holography : Holographic interferometry
(110.0180) Imaging systems : Microscopy
(180.3170) Microscopy : Interference microscopy
(090.1995) Holography : Digital holography
(070.2615) Fourier optics and signal processing : Frequency filtering

ToC Category:
Microscopy

History
Original Manuscript: November 1, 2012
Revised Manuscript: December 24, 2012
Manuscript Accepted: January 1, 2013
Published: March 1, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Pinhas Girshovitz and Natan T. Shaked, "Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy," Opt. Express 21, 5701-5714 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-5701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt.10(6), 060503 (2005).
  2. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A73A(10), 895–903 (2008).
  3. B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt.15(3), 036009 (2010).
  4. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt.16(3), 030506 (2011).
  5. P. Girshovitz and N. T. Shaked, “Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization,” Biomed. Opt. Express3(8), 1757–1773 (2012).
  6. S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram, U. Schnakenberg, P. Renaud, and H. Morgan, “Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing,” Front Neuroeng2, 1–7 (2009).
  7. M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt.48(34), H9–H15 (2009).
  8. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun.281(17), 4273–4281 (2008).
  9. V. Micó and J. García, “Common-path phase-shifting lensless holographic microscopy,” Opt. Lett.35(23), 3919–3921 (2010).
  10. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express17(15), 13080–13094 (2009).
  11. M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express2(9), 2721–2730 (2011).
  12. R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng.38(10), 1635–1639 (1999).
  13. P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express18(21), 21990–22003 (2010).
  14. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express19(24), 24005–24022 (2011).
  15. Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
  16. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012).
  17. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt.15(3), 030503 (2010).
  18. J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, “Self-reference quantitative phase microscopy for microfluidic devices,” Opt. Lett.35(4), 514–516 (2010).
  19. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011).
  20. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett.37(11), 2016–2018 (2012).
  21. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt.49(15), 2872–2878 (2010).
  22. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004).
  23. L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express2(4), 987–995 (2011).
  24. B. A. E. Saleh and M. C. Teich, “Fourier optics,” in Fundamentals of Photonics, B. A. E. Saleh ed. (Wiley, 1991), pp. 102–149.
  25. B. A. E. Saleh and M. C. Teich, “Statistical optics,” in Fundamentals of Photonics, B. A. E. Saleh ed. (Wiley, 1991), pp. 403–442.
  26. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  27. S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng.11(4), 287–300 (2001).
  28. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A.105(37), 13730–13735 (2008).
  29. I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt.17(10), 101509 (2012).
  30. J. W. Goodman, “Coherence of optical waves,” in Statistical Optics, B. A. E. Saleh ed. (Wiley, 2000), pp. 157–226.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPEG (148 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited