OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7041–7049

Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves

Shanshan Li, Mohammad M. Jadidi, Thomas E. Murphy, and Gagan Kumar  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7041-7049 (2013)
http://dx.doi.org/10.1364/OE.21.007041


View Full Text Article

Enhanced HTML    Acrobat PDF (3225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate propagation of terahertz waves confined to a semiconductor surface that is periodically corrugated with V-shaped grooves. A one-dimensional array of V-grooves is fabricated on a highly-doped silicon surface, using anisotropic wet-etching of crystalline silicon, thereby forming a plasmonic waveguide. Terahertz time domain spectroscopy is used to characterize the propagation of waves near the corrugated surface. We observe that the grating structure creates resonant modes that are confined near the surface. The degree of confinement and frequency of the resonant mode is found to be related to the pitch and depth of the V-grooves. The surface modes are confirmed through both numerical simulations and experimental measurements. Not only does the V-groove geometry represent a new and largely unexplored structure for supporting surface waves, but it also enables the practical fabrication of terahertz waveguides directly on semiconductor surfaces, without relying on reactive-ion etching or electroplating of sub-millimeter metallic surfaces.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 9, 2012
Revised Manuscript: January 27, 2013
Manuscript Accepted: February 28, 2013
Published: March 13, 2013

Citation
Shanshan Li, Mohammad M. Jadidi, Thomas E. Murphy, and Gagan Kumar, "Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves," Opt. Express 21, 7041-7049 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7041


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on grattings, vol. 111 of Springer tracts in modern physics (Springer, 1988).
  2. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88, 061113 (2006). [CrossRef]
  3. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009). [CrossRef]
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432, 376–379 (2004). [CrossRef] [PubMed]
  5. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett.88, 251120 (2006). [CrossRef]
  6. G. Kumar and V. K. Tripathi, “Surface enhanced Raman Scattering of a surface plasma wave,” J. Phys. D: Appl. Phys.39, 4436–4439 (2006). [CrossRef]
  7. Z. Tian, R. Singh, J. Han, J. Gu, Q. Xing, J. Wu, and W. Zhang, “Terahertz superconducting plasmonic hole array,” Opt. Lett.35, 3586–3588 (2010). [CrossRef] [PubMed]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater.7, 442–453 (2008). [CrossRef]
  9. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A: Pure Appl. Opt.11, 114030 (2009). [CrossRef]
  10. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.1, 601–26 (2008). [CrossRef]
  11. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Reports408, 131–314 (2005). [CrossRef]
  12. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004). [CrossRef] [PubMed]
  13. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett.90, 201906 (2007). [CrossRef]
  14. W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata, “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. of Select. Topics Quant. Electron.17, 146–153 (2011). [CrossRef]
  15. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nature Photon.2, 175–179 (2008). [CrossRef]
  16. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt.7, S97–S101 (2005). [CrossRef]
  17. G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys.13, 033024 (2011). [CrossRef]
  18. J. G. Rivas, M. Kuttge, P. H. Bolivar, and H. Kurz, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93, 256804 (2004). [CrossRef]
  19. W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express18, 21498–21503 (2010). [CrossRef] [PubMed]
  20. T. Jiang, L. Shen, J.-J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett.99, 261103 (2011). [CrossRef]
  21. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. Garcia-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34, 2063–2065 (2009). [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express16, 2676–2684 (2008). [CrossRef] [PubMed]
  23. F. Liu, S. Peng, H. Jia, M. Ke, and Z. Liu, “Strongly localized acoustic surface waves propagating along a V-groove,” Appl. Phys. Lett.94, 023505–3 (2009). [CrossRef]
  24. Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett.99, 111904 (2011). [CrossRef]
  25. C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express20, 5696–5706 (2012). [CrossRef] [PubMed]
  26. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett.95, 046802 (2005). [CrossRef] [PubMed]
  27. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006). [CrossRef] [PubMed]
  28. J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernández-Domínguez, “Spoof plasmon polaritons in slanted geometries,” Phys. Rev. B85, 075441 (2012). [CrossRef]
  29. S. Sriram and E. P. Supertzi, “Novel V-groove structures on silicon,” Appl. Opt.24, 1784–1787 (1985). [CrossRef] [PubMed]
  30. U. Fano, “Effects of configuration interaction on intensities amd phase shifts,” Phys. Rev.124, 1866–1878 (1961). [CrossRef]
  31. A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, “Terahertz transmission properties of quaisperiodic and aperiodic aperature arrays,” J. Opt. Soc. Am. B24, 2545–2555 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3709 KB)     
» Media 2: AVI (2887 KB)     
» Media 3: AVI (3634 KB)     
» Media 4: AVI (3686 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited