OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1002–1007

Optical guided mode resonance filter on a flexible substrate

Peter Reader-Harris, Armando Ricciardi, Thomas Krauss, and Andrea Di Falco  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 1002-1007 (2013)
http://dx.doi.org/10.1364/OE.21.001002


View Full Text Article

Enhanced HTML    Acrobat PDF (1669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the operation of a flexible optical filter based on guided mode resonances that operates in the visible regime. The filter is fabricated on a free standing polymeric membrane of 1.3 μm thickness and we show how the geometrical design parameters of the filter determine its optical properties, and how various types of filter can be made with this scheme. To highlight the versatility and robustness of the approach, we mount a filter onto a collimated fibre output and demonstrate successful wavelength filtering.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(250.5460) Optoelectronics : Polymer waveguides
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 13, 2012
Revised Manuscript: December 22, 2012
Manuscript Accepted: December 28, 2012
Published: January 9, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Peter Reader-Harris, Armando Ricciardi, Thomas Krauss, and Andrea Di Falco, "Optical guided mode resonance filter on a flexible substrate," Opt. Express 21, 1002-1007 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-1002


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61, 1022–1024 (1992). [CrossRef]
  2. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A14, 1617–1626 (1997). [CrossRef]
  3. R. Haidar, G. Vincent, S. Collin, N. Bardou, N. Guerineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010). [CrossRef]
  4. G. Vincent, E. Sakat, P. Ghenuche, S. Collin, N. Bardou, S. Rommeluere, J. Primot, J. Deschamps, F. Pardo, J.-L. Pelouard, and R. Haidar, “Spectral filtering with subwavelength gratings: overview and latest advances,” Proc. SPIE8268, 826807 (2012). [CrossRef]
  5. A. Christ, T. Zentgrat, J. Kuhl, S. G. Tikhodeev, N. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 1–15 (2004). [CrossRef]
  6. W. Liu, Z. Lai, H. Guo, and Y. Liu, “Guided-mode resonance filters with shallow grating,” Opt. Lett.35, 865–867 (2010). [CrossRef] [PubMed]
  7. X. Buet, E. Daran, D. Belharet, and A. Monmayrant, “High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter,” Opt. Express20, 9322–9327 (2012). [CrossRef] [PubMed]
  8. A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O’Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics J.2, 696–702 (2010). [CrossRef]
  9. A. G. Borisov, F. García de Abajo, and S. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B71, 1–7 (2005). [CrossRef]
  10. C.-H. Lin, R.-L. Chern, and H.-Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19, 415–424 (2011). [CrossRef] [PubMed]
  11. F. Wang and Y. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett.97, 1–4 (2006). [CrossRef]
  12. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961). [CrossRef]
  13. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010). [CrossRef]
  14. A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010). [CrossRef]
  15. M. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B72, 1–12 (2005). [CrossRef]
  16. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74, 259–266 (2006). [CrossRef]
  17. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett.104, 1–4 (2010). [CrossRef]
  18. J. Song, R. Proietti Zaccaria, M. B. Yu, and X. W. Sun, “Tunable Fano resonance in photonic crystal slabs,” Opt. Express14, 8812–8826 (2006). [CrossRef] [PubMed]
  19. A. Di Falco, M. Ploschner, and T. F. Krauss, “Flexible metamaterials at visible wavelengths,” New J. Phys.12, 113006 (2010). [CrossRef]
  20. M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett.100, 073101 (2012). [CrossRef]
  21. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10, 4222–4227 (2010). [CrossRef] [PubMed]
  22. B. A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley, 2000). [CrossRef]
  23. A. Di Falco, Y. Zhao, and A. Alu, “Optical metasurfaces with robust angular response on flexible substrates,” Appl. Phys. Lett.99, 163110 (2011). [CrossRef]
  24. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9, 407–412 (2010). [CrossRef] [PubMed]
  25. A. Alu, “Mantle cloak: invisibility induced by a surface,” Phys. Rev. B80, 1–5 (2009). [CrossRef]
  26. D. J. Lipomi, R. V. Martinez, M. A. Kats, S. H. Kang, P. Kim, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Patterning the tips of optical fibers with metallic nanostructures using nanoskiving,” Nano Lett.11, 632–636 (2011). [CrossRef]
  27. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano6, 3163–3170 (2012). [CrossRef] [PubMed]
  28. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12, 1068–1076 (1995). [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  30. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B66, 1–10 (2002). [CrossRef]
  31. M. Kolle, B. Zheng, N. Gibbons, J. J. Baumberg, and U. Steiner, “Stretch-tuneable dielectric mirrors and optical microcavities,” Opt. Express18, 4356–4364 (2010). [CrossRef] [PubMed]
  32. A. Köhler, “Ein neues beleuchtungsverfahren für mikrophotographische zwecke,” Z Wiss. Mikr.10, 433–440 (1893).
  33. C. Hammond, “A symmetrical representation of the geometrical optics of the light microscope,” J. Microsc.192, 63–68 (1998). [CrossRef]
  34. I. Bergmair, B. Dastmalchi, M. Bergmair, a. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology22, 325301 (2011). [CrossRef] [PubMed]
  35. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. a. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol.6, 402–407 (2011). [CrossRef] [PubMed]
  36. R. A. Guerrero, M. W. C. Sze, and J. R. A. Batiller, “Deformable curvature and beam scanning with an elastomeric concave grating actuated by a shape memory alloy,” Appl. Opt.49, 3634–3639 (2010). [CrossRef] [PubMed]
  37. A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett.32, 2269–2271 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited