OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1008–1019

QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL

Yufei Ma, Rafał Lewicki, Manijeh Razeghi, and Frank K. Tittel  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1008-1019 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1856 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a state-of-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm−1, a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection, respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed.

© 2013 OSA

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(300.6340) Spectroscopy : Spectroscopy, infrared
(110.5125) Imaging systems : Photoacoustics
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Remote Sensing

Original Manuscript: November 13, 2012
Revised Manuscript: December 29, 2012
Manuscript Accepted: December 29, 2012
Published: January 9, 2013

Yufei Ma, Rafał Lewicki, Manijeh Razeghi, and Frank K. Tittel, "QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL," Opt. Express 21, 1008-1019 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. K. Khalil and R. A. Rasmussen, “Carbon monoxide in the earth’s atmosphere: increasing trend,” Science224(4644), 54–56 (1984). [CrossRef] [PubMed]
  2. J. A. Logan, M. J. Prather, S. C. Wofsy, and M. B. McElroy, “Tropospheric chemistry: a global perspective,” J. Geophys. Res.86(C8), 7210–7254 (1981). [CrossRef]
  3. A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, “Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century,” Science326(5949), 123–125 (2009). [CrossRef] [PubMed]
  4. T. Mitsui, M. Miyamura, A. Matsunami, K. Kitagawa, and N. Arai, “Measuring nitrous oxide in exhaled air by gas chromatography and infrared photoacoustic spectrometry,” Clin. Chem.43(10), 1993–1995 (1997). [PubMed]
  5. L. Tao, K. Sun, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Optimization for simultaneous detection of atmospheric N2O and CO with a quantum cascade laser,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2012), paper ATh3L.
  6. J. Li, U. Parchatka, R. Königstedt, and H. Fischer, “Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer,” Opt. Express20(7), 7590–7601 (2012). [CrossRef] [PubMed]
  7. T. Yuanyuan, L. Wenqing, K. Ruifeng, L. Jianguo, H. Yabai, Z. Yujun, X. Zhenyu, R. Jun, and G. Hui, “Measurements of NO and CO in Shanghai urban atmosphere by using quantum cascade lasers,” Opt. Express19(21), 20224–20232 (2011). [CrossRef] [PubMed]
  8. J. Vanderover, W. Wang, and M. A. Oehlschlaeger, “A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy,” Appl. Phys. B103(4), 959–966 (2011). [CrossRef]
  9. B. W. M. Moeskops, H. Naus, S. M. Cristescu, and F. J. M. Harren, “Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath,” Appl. Phys. B82(4), 649–654 (2006). [CrossRef]
  10. L. Joly, T. Decarpenterie, N. Dumelié, X. Thomas, I. Mappe-Fogaing, D. Mammez, R. Vallon, G. Durry, B. Parvitte, M. Carras, X. Marcadet, and V. Zéninari, “Development of a versatile atmospheric N2O sensor based on quantum cascade laser technology at 4.5 μm,” Appl. Phys. B103(3), 717–723 (2011). [CrossRef]
  11. D. D. Nelson, B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3325–3335 (2004). [CrossRef] [PubMed]
  12. J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt.50(4), A74–A85 (2011). [CrossRef] [PubMed]
  13. J. Mohn, B. Tuzson, A. Manninen, N. Yoshida, S. Toyoda, W. A. Brand, and L. Emmenegger, “Site selective real-time measurements of atmospheric N2O isotopomers by laser spectroscopy,” Atmos. Meas. Tech. Discuss.5(1), 813–838 (2012). [CrossRef]
  14. C. Grinde, A. Sanginario, P. A. Ohlckers, G. U. Jensen, and M. M. Mielnik, “Two clover-shaped piezoresistive silicon microphones for photo acoustic gas sensors,” J. Micromech. Microeng.20(4), 045010 (2010). [CrossRef]
  15. A. Elia, F. Rizzi, C. Di Franco, P. M. Lugarà, and G. Scamarcio, “Quantum cascade laser-based photoacoustic spectroscopy of volatile chemicals: application to hexamethyldisilazane,” Spectrochim. Acta A Mol. Biomol. Spectrosc.64(2), 426–429 (2006). [CrossRef] [PubMed]
  16. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett.27(21), 1902–1904 (2002). [CrossRef] [PubMed]
  17. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B100(3), 627–635 (2010). [CrossRef]
  18. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 mum,” Opt. Express15(12), 7357–7366 (2007). [CrossRef] [PubMed]
  19. C. Bauer, U. Willer, R. Lewicki, A. Pohlkötter, A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A Mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser.157(1), 012002 (2009). [CrossRef]
  20. A. A. Kosterev, L. Dong, D. Thomazy, F. K. Tittel, and S. Overby, “QEPAS for chemical analysis of multi-component gas mixtures,” Appl. Phys. B101(3), 649–659 (2010). [CrossRef]
  21. H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett.36(4), 481–483 (2011). [CrossRef] [PubMed]
  22. R. Lewicki, J. Waclawek, M. Jahjah, Y. Ma, E. Chrysostom, B. Lendl, and F. K. Tittel, “A sensitive CW DFB quantum cascade laser based QEPAS sensor for detection of SO2,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2012), paper ATh5A.
  23. S. Gray, A. Liu, F. Xie, and C. E. Zah, “Detection of nitric oxide in air with a 5.2 μm distributed-feedback quantum cascade laser using quartz-enhanced photoacoustic spectroscopy,” Opt. Express18(22), 23353–23357 (2010). [CrossRef] [PubMed]
  24. M. Razeghi, “High-performance InP-based Mid-IR quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009). [CrossRef]
  25. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett.97(23), 231119 (2010). [CrossRef]
  26. S. Schilt, L. Thévenaz, and P. Robert, “Wavelength modulation spectroscopy: combined frequency and intensity laser modulation,” Appl. Opt.42(33), 6728–6738 (2003). [CrossRef] [PubMed]
  27. X. Chao, J. B. Jeffries, and R. K. Hanson, “Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser,” Appl. Phys. B106(4), 987–997 (2012). [CrossRef]
  28. L. Dong, R. Lewicki, K. Liu, P. R. Buerki, M. J. Weida, and F. K. Tittel, “Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B107(2), 275–283 (2012). [CrossRef]
  29. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  30. J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, and E. Wood, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010). [CrossRef]
  31. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010). [CrossRef]
  32. R. Lewicki, L. Dong, Y. Ma, and F. K. Tittel, “A compact CW quantum cascade laser based QEPAS sensor for sensitive detection of nitric oxide,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2012), paper CW3B.4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited