OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 102–111

Simultaneous rotation, orientation and displacement control of birefringent microparticles in holographic optical tweezers

A. Arias, S. Etcheverry, P. Solano, J. P. Staforelli, M. J. Gallardo, H. Rubinsztein-Dunlop, and C. Saavedra  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 102-111 (2013)
http://dx.doi.org/10.1364/OE.21.000102


View Full Text Article

Enhanced HTML    Acrobat PDF (2217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental implementation of a new method for generating multiple dynamical optical tweezers, where each one of them is generated with an independent linear polarization state with arbitrary orientation. This also allows an independent simultaneous polarization-rotation control. The laser beam, both for generating multiple traps and polarization control, has been modulated using a single reflective nematic liquid crystal with parallel alignment. We present experimental results of controlled displacement, orientation and rotation of birefringent particles. In addition, a simple method for estimating and canceling out the primary astigmatism present in the system is presented.

© 2013 OSA

OCIS Codes
(220.1000) Optical design and fabrication : Aberration compensation
(230.5440) Optical devices : Polarization-selective devices
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: October 11, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: November 29, 2012
Published: January 2, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
A. Arias, S. Etcheverry, P. Solano, J. P. Staforelli, M. J. Gallardo, H. Rubinsztein-Dunlop, and C. Saavedra, "Simultaneous rotation, orientation and displacement control of birefringent microparticles in holographic optical tweezers," Opt. Express 21, 102-111 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave,” Phys. Rev. A30, 2508–2516 (1984). [CrossRef]
  2. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev.54, 1593–1596 (1996). [CrossRef]
  3. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett.22, 52–54 (1997). [CrossRef] [PubMed]
  4. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998). [CrossRef]
  5. S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express17, 21944–21955 (2009). [CrossRef] [PubMed]
  6. T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys.11, 1–20 (2009). [CrossRef]
  7. R. L. Eriksen, P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array,” Appl. Opt.42, 5107–5111 (2003). [CrossRef] [PubMed]
  8. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16, 15897–15902 (2008). [CrossRef] [PubMed]
  9. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77, 205–228 (2008). [CrossRef] [PubMed]
  10. Z. Bryant, M. D. Stone, J. Gore, S. B. Smith, N. R. Cozzarelli, and C. Bustamante, “Structural transitions and elasticity from torque measurements on DNA,” Nature424, 338341 (2003). [CrossRef]
  11. M. D. Stone, Z. Bryant, N. J. Crisona, S. B. Smith, A. Vologodskii, and , “Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases,” Proc. Natl. Acad. Sci. USA100, 8654–8659 (2003). [CrossRef] [PubMed]
  12. J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt.44, 4049–4052 (2005). [CrossRef] [PubMed]
  13. J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185, 77–82 (2000). [CrossRef]
  14. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007). [CrossRef]
  15. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express14, 2101–2107 (2006). [CrossRef] [PubMed]
  16. J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE5553, 58 (2004). [CrossRef]
  17. K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14, 4170–4175 (2006). [CrossRef] [PubMed]
  18. R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of optical tweezers including aberrations,” Apl. Phys. Lett.100, 1311151 (2012). [CrossRef]
  19. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express15, 5801–5808 (2007). [CrossRef] [PubMed]
  20. R. A. Chipman, “Polarimetry,” in Handbook of Optics, (McGraw-Hill, New York, 1994) Chap 22.
  21. C. López-Quesada, J. Andilla, and E. Martín-Badosa, “Correction of aberration in holographic optical tweezers using a ShackHartmann sensor,” Appl. Opt.48, 1084–1090 (2009). [CrossRef]
  22. R. K. Singh, P. Senthilkumaran, and K. Singh, “Influence of astigmatism and defocusing on the focusing of a singular beam,” Opt. Commun.270, 128–138 (2007). [CrossRef]
  23. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20, 14015–14029 (2012). [CrossRef] [PubMed]
  24. S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. M. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers,” Lab. on a Chip9, 2059–2062 (2009). [CrossRef] [PubMed]
  25. T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nature Photon.6, 62–67 (2012). [CrossRef]
  26. D.S. Goodsell, “The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers,” Stem Cells19, 348349 (2001). [CrossRef]
  27. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nature Photon.5, 318–321 (2011). [CrossRef]
  28. C. Bustamante, “Of torques, forces, and protein machines,” Prot. Sci.13, 3061–3065 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (2094 KB)      QuickTime
» Media 2: MOV (2084 KB)      QuickTime
» Media 3: MOV (2211 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited