OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1030–1040

Pr3+-doped heavy metal germanium tellurite glasses for irradiative light source in minimally invasive photodynamic therapy surgery

J. Yang, B. J. Chen, E. Y. B. Pun, B. Zhai, and H. Lin  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1030-1040 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1916 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pr3+-doped medium-low phonon energy heavy metal germanium tellurite (NZPGT) glasses have been fabricated and the intense multi-peak red fluorescence emissions of Pr3+ are exhibited. Judd-Ofelt parameters Ω2 = 3.14 × 10−20cm2, Ω4 = 10.67 × 10−20cm2 and Ω6 = 3.95 × 10−20cm2 indicate a high asymmetrical and covalent environment in the optical glasses. The spontaneous emission probabilities Aij corresponding to the 1D23H4, 3P03H6, and 3P03F2 transitions are derived to be 1859.6, 6270.1 and 17276.3s−1, respectively, and the relevant stimulated emission cross-sections σem are 5.20 × 10−21, 14.14 × 10−21 and 126.77 × 10−21cm2, confirming that the effectiveness of the red luminescence in Pr3+-doped NZPGT glasses. Under the commercial blue LED excitation, the radiant flux and the quantum yield for the red fluorescence of Pr3+ are solved to be 219μW and 11.80%, respectively. 85.24% photons of the fluorescence in the visible region are demonstrated to be located in 600−720nm wavelength range, which matches the excitation band of the most photosensitizers (PS), holding great promise for photodynamic therapy (PDT) treatment and clinical trials.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 15, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 24, 2012
Published: January 9, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

J. Yang, B. J. Chen, E. Y. B. Pun, B. Zhai, and H. Lin, "Pr3+-doped heavy metal germanium tellurite glasses for irradiative light source in minimally invasive photodynamic therapy surgery," Opt. Express 21, 1030-1040 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin.61(4), 250–281 (2011). [CrossRef] [PubMed]
  2. S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics2(7), 394–395 (2008). [CrossRef]
  3. S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol.5(8), 497–508 (2004). [CrossRef] [PubMed]
  4. J. Gray and G. Fullarton, “The current role of photodynamic therapy in oesophageal dysplasia and cancer,” Photodiagn. Photodyn. Ther.4(3), 151–159 (2007). [CrossRef]
  5. C. A. Morton, C. Whitehurst, J. V. Moore, and R. M. MacKie, “Comparison of red and green light in the treatment of Bowen’s disease by photodynamic therapy,” Br. J. Dermatol.143(4), 767–772 (2000). [CrossRef] [PubMed]
  6. K. Uk, D. A. Makarov, L. S. Yup, B. S. Jin, and G. V. Papayan, “Illuminator for photodynamic therapy and fluorescence diagnosis with lightguide output of the radiation,” J. Opt. Technol.75(12), 772–777 (2008). [CrossRef]
  7. L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci.17(3), 173–186 (2002). [CrossRef] [PubMed]
  8. S. Mitra and T. H. Foster, “Carbogen breathing significantly enhances the penetration of red light in murine tumours in vivo,” Phys. Med. Biol.49(10), 1891–1904 (2004). [CrossRef] [PubMed]
  9. B. J. Chen, L. F. Shen, E. Y. B. Pun, and H. Lin, “Sm3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery,” Opt. Express20(2), 879–889 (2012). [CrossRef] [PubMed]
  10. D. L. Yang, H. Gong, E. Y. B. Pun, X. Zhao, and H. Lin, “Rare-earth ions doped heavy metal germanium tellurite glasses for fiber lighting in minimally invasive surgery,” Opt. Express18(18), 18997–19008 (2010). [CrossRef] [PubMed]
  11. B. C. Jamalaiah, J. S. Kumar, A. M. Babu, L. R. Moorthy, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, and H. Choi, “Optical absorption, fluorescence and decay properties of Pr3+-doped PbO-H3BO3-TiO2-AlF3 glasses,” J. Lumin.129(9), 1023–1028 (2009). [CrossRef]
  12. Y. Inaguma, T. Muronoi, K. Sano, T. Tsuchiya, Y. Mori, T. Katsumata, and D. Mori, “An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M=Nb, Ta):Pr3+,” Inorg. Chem.50(12), 5389–5395 (2011). [CrossRef] [PubMed]
  13. L. L. Zhang, G. P. Dong, M. Y. Peng, and J. R. Qiu, “Comparative investigation on the spectroscopic properties of Pr3+-doped boro-phosphate, boro-germo-silicate and tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.93, 223–227 (2012). [CrossRef]
  14. B. Dieudonné, B. Boulard, G. Alombert-Goget, Y. Gao, A. Chiasera, S. Varas, and M. Ferrari, “Pr3+-Yb3+-codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission,” J. Non-Cryst. Solids358(18-19), 2695–2700 (2012). [CrossRef]
  15. T. Satyanarayana, M. G. Brik, N. Venkatramaiah, I. V. Kityk, K. J. Plucinski, V. Ravikumar, and N. Veeraiah, “Influence of crystallization on the luminescence characteristics of Pr3+ ions in PbO-Sb2O3-B2O3 glass system,” J. Am. Ceram. Soc.93(7), 2004–2011 (2010).
  16. A. Lecointre, A. Bessiere, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: the example of YPO4: Pr3+, Ln3+ (Ln = Nd, Er, Ho, Dy),” J. Phys. Chem. C115(10), 4217–4227 (2011). [CrossRef]
  17. Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5-CaO-SrO-BaO phosphate glass,” Opt. Mater.32(4), 547–553 (2010). [CrossRef]
  18. H. Ohashi, K. Hachiya, K. Yoshida, M. Yasuda, and J. Kondoh, “Photoluminescence properties in Pr3+-doped chalcogenide glass,” J. Alloy. Comp.373(1-2), 1–8 (2004). [CrossRef]
  19. P. Boutinaud, L. Sarakha, and R. Mahiou, “NaNbO3: Pr3+: a new red phosphor showing persistent luminescence,” J. Phys. Condens. Matter21(2), 025901 (2009). [CrossRef] [PubMed]
  20. D. Rajesh, A. Balakrishna, M. Seshadri, and Y. C. Ratnakaram, “Spectroscopic investigations on Pr3+ and Nd3+ doped strontium-lithium-bismuth borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc.97, 963–974 (2012). [CrossRef]
  21. P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phorphors with Pr3+,” Opt. Mater.28(1-2), 9–13 (2006). [CrossRef]
  22. P. Solarz, “Pr3+ as a sensitiser of red Eu3+ luminescence in K5Li2GdF10: Pr3+, Eu3+ upon VUV-UV excitation,” Opt. Mater.31(1), 114–116 (2008). [CrossRef]
  23. J. Chen, X. H. Gong, Y. F. Lin, Y. J. Chen, Z. D. Luo, and Y. D. Huang, “Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors,” J. Alloy. Comp.492(1-2), 667–670 (2010). [CrossRef]
  24. X. M. Zhang, J. H. Zhang, Z. G. Nie, M. Y. Wang, and X. G. Ren, “Enhanced red phosphorescence in nanosized CaTiO3: Pr3+ phosphors,” Appl. Phys. Lett.90(15), 1519111–1519113 (2007).
  25. L. R. Jaroszewicz, A. Majchrowski, M. G. Brik, N. Alzayed, W. Kuznik, I. V. Kityk, and S. Klosowicz, “Specific feature of fluorescence kinetics of Pr3+ doped BiB3O6 glasses,” J. Alloy. Comp.538, 220–223 (2012). [CrossRef]
  26. M. E. Rodriguez, V. E. Diz, J. Awruch, and L. E. Dicelio, “Photophysics of zinc (II) phthalocyanine polymer and gel formulation,” Photochem. Photobiol.86(3), 513–519 (2010). [CrossRef] [PubMed]
  27. J. T. F. Lau, P. C. Lo, Y. M. Tsang, W. P. Fong, and D. K. P. Ng, “Unsymmetrical β-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy,” Chem. Commun. Camb.47(34), 9657–9659 (2011). [CrossRef] [PubMed]
  28. B. J. Chen, L. F. Shen, H. Lin, and E. Y. B. Pun, “Signal amplification in rare-earth doped heavy metal germanium tellurite glass fiber,” J. Opt. Soc. Am. B28(10), 2320–2327 (2011). [CrossRef]
  29. F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, and M. Tonelli, “Visible laser emission of solid state pumped LiLuF4:Pr3+,” Opt. Express15(3), 992–1002 (2007). [CrossRef] [PubMed]
  30. H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, F. E. Fernandez, L. Liu, L. Xu, and F. Gan, “Host excitation-induced red emission from Pr3+ in strontium barium niobate thin film,” J. Lumin.108(1-4), 37–41 (2004). [CrossRef]
  31. M. Olivier, P. Pirasteh, J. L. Doualan, P. Camy, H. Lhermite, J. L. Adam, and V. Nazabal, “Pr3+-doped ZBLA fluoride glasses for visible laser emission,” Opt. Mater.33(7), 980–984 (2011). [CrossRef]
  32. X. Liu, M. Naftaly, and A. Jha, “Spectroscopic evidence for oxide dopant site in GeS2-based glasses using visible photoluminescence from Pr3+ probe ions,” J. Lumin.96(2-4), 227–238 (2002). [CrossRef]
  33. V. K. Tikhomirov and S. A. Tikhomirova, “Hypersensitive transition 3P0→3F2 of Pr3+ related to the polarizability and structure of glass host,” J. Non-Cryst. Solids274(1-3), 50–54 (2000). [CrossRef]
  34. V. K. Rai, S. B. Rai, and D. K. Rai, “Spectroscopic properties of Pr3+ doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc.62(1-3), 302–306 (2005). [CrossRef]
  35. S. X. Shen, M. Naftaly, and A. Jha, “Tungsten-tellurite-a host glass for broadband EDFA,” Opt. Commun.205(1-3), 101–105 (2002). [CrossRef]
  36. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci.57(8), 1426–1491 (2012). [CrossRef]
  37. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  38. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  39. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys.49(10), 4424–4442 (1968). [CrossRef]
  40. J. S. Zhang, F. Liu, B. J. Chen, X. J. Wang, and J. H. Zhang, “Parameterizing intensity of 4f2→4f2 electric-dipole transition in Pr3+ doped LiYF4,” Phys. Lett. A375(3), 743–746 (2011). [CrossRef]
  41. C. S. Rao, I. V. Kityk, T. Srikumar, G. N. Raju, V. R. Kumar, Y. Gandhi, and N. Veeraiah, “Spectroscopy features of Pr3+ and Er3+ ions in Li2O-ZrO2-SiO2 glass matrices mixed with some sesquioxides,” J. Alloy. Comp.509(37), 9230–9239 (2011). [CrossRef]
  42. P. Srivastava, S. B. Rai, and D. K. Rai, “Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses,” J. Alloy. Comp.368(1-2), 1–7 (2004). [CrossRef]
  43. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970). [CrossRef]
  44. G. S. Samal, A. K. Tripathi, A. K. Biswas, S. Singh, and Y. N. Mohapatra, “Photoluminescence quantum efficiency (PLQE) and PL decay characteristics of polymeric light emitting materials,” Synth. Met.155(2), 344–348 (2005). [CrossRef]
  45. L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin.115(3-4), 77–90 (2005). [CrossRef]
  46. S. Tanabe, S. Fujita, S. Yoshihara, A. Sakamoto, and S. Yamamoto, “YAG glass-ceramic phosphor for white LED (II): luminescence characteristics,” Proc. SPIE5941, 594112, 594112-6 (2005). [CrossRef]
  47. H. Lin, X. Y. Wang, C. M. Li, X. J. Li, S. Tanabe, and J. Y. Yu, “Spectral power distribution and quantum yields of Sm3+-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(5), 1417–1420 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited