OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1076–1086

Three-layered metallodielectric nanoshells: plausible meta-atoms for metamaterials with isotropic negative refractive index at visible wavelengths

DaJian Wu, ShuMin Jiang, Ying Cheng, and XiaoJun Liu  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 1076-1086 (2013)
http://dx.doi.org/10.1364/OE.21.001076


View Full Text Article

Enhanced HTML    Acrobat PDF (2586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A three-layered Ag−low-permittivity (LP)−high-permittivity (HP) nanoshell is proposed as a plausible meta-atom for building the three-dimensional isotropic negative refractive index metamaterials (NIMs). The overlap between the electric and magnetic responses of Ag−LP−HP nanoshell can be realized by designing the geometry of the particle, which can lead to the negative electric and magnetic polarizabilities. Then, the negative refractive index is found in the random arrangement of Ag−LP−HP nanoshells. Especially, the modulation of the middle LP layer can move the negative refractive index range into the visible region. Because the responses arise from the each meta-atom, the metamaterial is intrinsically isotropic and polarization independent. It is further found with the increase of the LP layer thickness that the negative refractive index range of the random arrangement shows a large blue-shift and becomes narrow. With the decrease of the filling fraction, the negative refractive index range shows a blue-shift and becomes narrow while the maximum of the negative refractive index decreases.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Metamaterials

History
Original Manuscript: October 15, 2012
Revised Manuscript: December 8, 2012
Manuscript Accepted: December 29, 2012
Published: January 10, 2013

Citation
DaJian Wu, ShuMin Jiang, Ying Cheng, and XiaoJun Liu, "Three-layered metallodielectric nanoshells: plausible meta-atoms for metamaterials with isotropic negative refractive index at visible wavelengths," Opt. Express 21, 1076-1086 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-1076


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010). [CrossRef] [PubMed]
  2. C. M. Soukoulis and M. Wegener, “Materials science. Optical metamaterials--more bulky and less lossy,” Science330(6011), 1633–1634 (2010). [CrossRef] [PubMed]
  3. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011). [CrossRef] [PubMed]
  4. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  5. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  7. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007). [CrossRef] [PubMed]
  8. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory and Microwave Applications (Wiley, 2007).
  9. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B73(4), 045105 (2006). [CrossRef]
  10. S. M. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett.34(22), 3478–3480 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-22-3478 . [CrossRef] [PubMed]
  11. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011). [CrossRef] [PubMed]
  12. F. J. Rodríguez-Fortuño, C. García-Meca, R. Ortuño, J. Martí, and A. Martínez, “Coaxial plasmonic waveguide array as a negative-index metamaterial,” Opt. Lett.34(21), 3325–3327 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-21-3325 . [CrossRef] [PubMed]
  13. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010). [CrossRef] [PubMed]
  14. B. Kante, K. O’Brien, A. Niv, X. B. Yin, and X. Zhang, “Proposed isotropic negative index in three-dimensional optical metamaterials,” Phys. Rev. B85(4), 041103 (2012). [CrossRef]
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  17. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  18. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010). [CrossRef] [PubMed]
  19. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012). [CrossRef] [PubMed]
  20. D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B83(4), 045107 (2011). [CrossRef]
  21. A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano6(1), 837–842 (2012). [CrossRef] [PubMed]
  22. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  23. A. K. Kodali, M. V. Schulmerich, R. Palekar, X. Llora, R. Bhargava, and A. K, “Optimized nanospherical layered alternating metal-dielectric probes for optical sensing,” Opt. Express18(22), 23302–23313 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23302 . [CrossRef] [PubMed]
  24. Z. C. Ruan and S. H. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105(1), 013901 (2010). [CrossRef] [PubMed]
  25. R. Bardhan, S. Mukherjee, N. A. Mirin, S. D. Levit, P. Nordlander, and N. J. Halas, “Nanosphere-in-a-nanoshell: a simple nanomatryushka,” J. Phys. Chem. C114(16), 7378–7383 (2010). [CrossRef]
  26. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012). [CrossRef] [PubMed]
  27. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012). [CrossRef]
  28. R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New J. Phys.13(12), 123017 (2011). [CrossRef]
  29. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B16(10), 1824–1832 (1999). [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  31. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  32. D. J. Wu, X. D. Xu, and X. J. Liu, “Tunable near-infrared optical properties of three-layered metal nanoshells,” J. Chem. Phys.129(7), 074711 (2008). [CrossRef] [PubMed]
  33. M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B79(7), 073103 (2009). [CrossRef]
  34. E. Prodan, A. Lee, and P. Nordlander, “The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells,” Chem. Phys. Lett.360(3-4), 325–332 (2002). [CrossRef]
  35. E. Palik, Handbook of Optical Constant of Solids (Academic, 1985).
  36. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010). [CrossRef]
  37. K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc.129(6), 1524–1525 (2007). [CrossRef] [PubMed]
  38. W. Wang, Z. P. Li, B. H. Gu, Z. Y. Zhang, and H. X. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano3(11), 3493–3496 (2009). [CrossRef] [PubMed]
  39. M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater. (Deerfield Beach Fla.)21(28), 2899–2902 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited