OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1137–1151

Gradient-based interpolation method for division-of-focal-plane polarimeters

Shengkui Gao and Viktor Gruev  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1137-1151 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4306 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent advancements in nanotechnology and nanofabrication have allowed for the emergence of the division-of-focal-plane (DoFP) polarization imaging sensors. These sensors capture polarization properties of the optical field at every imaging frame. However, the DoFP polarization imaging sensors suffer from large registration error as well as reduced spatial-resolution output. These drawbacks can be improved by applying proper image interpolation methods for the reconstruction of the polarization results. In this paper, we present a new gradient-based interpolation method for DoFP polarimeters. The performance of the proposed interpolation method is evaluated against several previously published interpolation methods by using visual examples and root mean square error (RMSE) comparison. We found that the proposed gradient-based interpolation method can achieve better visual results while maintaining a lower RMSE than other interpolation methods under various dynamic ranges of a scene ranging from dim to bright conditions.

© 2013 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 1, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 24, 2012
Published: January 10, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Shengkui Gao and Viktor Gruev, "Gradient-based interpolation method for division-of-focal-plane polarimeters," Opt. Express 21, 1137-1151 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express18(18), 19087–19094 (2010). [CrossRef] [PubMed]
  2. R. Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express18(25), 25815–25824 (2010). [CrossRef] [PubMed]
  3. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt.51(22), 5392–5400 (2012). [CrossRef] [PubMed]
  4. M. Kulkarni and V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express20(21), 22997–23012 (2012). [CrossRef] [PubMed]
  5. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  6. Y. Liua, T. York, W. Akersa, G. Sudlowa, V. Gruev, and S. Achilefua, “Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor,” J. Biomed. Opt.17(11), 116001.1–116001.4 (2012)
  7. D. Miyazaki, R. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, 2, 982–987 (2003).
  8. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng.30(3), 570–587 (2005). [CrossRef]
  9. T. V. T. Krishna, C. D. Creusere, and D. G. Voelz, “Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint,” IEEE Trans. Image Process.20(1), 288–292 (2011). [CrossRef] [PubMed]
  10. M. Sarkar, D. San Segundo Bello, C. van Hoof, and A. Theuwissen, “Integrated polarization analyzing CMOS image sensor for material classification,” IEEE Sens. J.11(8), 1692–1703 (2011). [CrossRef]
  11. M. Anastasiadou, A. D. Martino, D. Clement, F. Li’ege, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi5(5), 1423–1426 (2008). [CrossRef]
  12. E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc.107(6), 884–890 (2009). [CrossRef]
  13. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express17(11), 9112–9125 (2009). [CrossRef] [PubMed]
  14. B. E. Bayer, “Color imaging array,” U.S. Patent 3,971,065, Jul 20, 1976.
  15. D. Zhou, “An edge-directed bicubic interpolation algorithm,” Image and Signal Processing (CISP), 2010 3rd International Congress on, vol.3, 1186–1189, 16–18 Oct. 2010.
  16. A. Giachetti and N. Asuni, “Real-time artifact-free Image upscaling,” IEEE Trans. Image Process.20(10), 2760–2768 (2011). [CrossRef] [PubMed]
  17. S. Gao and V. Gruev, “Image interpolation methods evaluation for division of focal plane polarimeters,” Proc. SPIE8012, 80120N, 80120N-10 (2011). [CrossRef]
  18. S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express19(27), 26161–26173 (2011). [CrossRef] [PubMed]
  19. X. Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE8364, 83640L, 83640L-8 (2012). [CrossRef]
  20. S. Gao and V. Gruev, “Gradient based interpolation for division of focal plane polarization imaging sensors,” Circuits and Systems (ISCAS), 2012 IEEE International Symposium on, 1855–1858, 20–23 May 2012.
  21. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” in ACM SIGGRAPH ASIA 2008 courses, New York, NY, USA, 71:1–71:15 (2008).
  22. T. W. Cronin, E. J. Warrant, and B. Greiner, “Celestial polarization patterns during twilight,” Appl. Opt.45(22), 5582–5589 (2006). [CrossRef] [PubMed]
  23. J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Ultra-high extinction ratio micropolarizers using plasmonic lenses,” Opt. Express19(19), 18072–18079 (2011). [CrossRef] [PubMed]
  24. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized, ultrathin, broadband circular polarizers,” Nat. Commun. 3(870), (2012).
  25. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011). [CrossRef]
  26. R. Keys, “Cubic convolution interpolation for digital image processing,” Acoustics, Speech and Signal Processing, IEEE Transactions on29(6), 1153–1160 (1981). [CrossRef]
  27. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.8(6), 679–698 (1986). [CrossRef] [PubMed]
  28. A. C. Neville and B. M. Luke, “Form optical activity in crustacean cuticle,” J. Insect Physiol.17(3), 519–526 (1971). [CrossRef]
  29. Prof. Justin Marshall, Sensory Neurobiology Group, University of Queensland, Brisbane Queensland 4072, Australia, (personal communication, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited