OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1152–1162

50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography

Lin Ma, Xuesong Li, Scott T. Sanders, Andrew W. Caswell, Sukesh Roy, David H. Plemmons, and James R. Gord  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1152-1162 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a novel laser diagnostic and its demonstration in a practical aero-propulsion engine (General Electric J85). The diagnostic technique, named hyperspectral tomography (HT), enables simultaneous 2-dimensional (2D) imaging of temperature and water-vapor concentration at 225 spatial grid points with a temporal response up to 50 kHz. To our knowledge, this is the first time that such sensing capabilities have been reported. This paper introduces the principles of the HT techniques, reports its operation and application in a J85 engine, and discusses its perspective for the study of high-speed reactive flows.

© 2013 OSA

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(280.1740) Remote sensing and sensors : Combustion diagnostics

ToC Category:
Image Processing

Original Manuscript: September 27, 2012
Revised Manuscript: November 8, 2012
Manuscript Accepted: November 9, 2012
Published: January 10, 2013

Lin Ma, Xuesong Li, Scott T. Sanders, Andrew W. Caswell, Sukesh Roy, David H. Plemmons, and James R. Gord, "50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography," Opt. Express 21, 1152-1162 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst.33(1), 1–40 (2011). [CrossRef]
  2. K. Kohse-Hoinghaus, R. S. Barlow, M. Alden, and E. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst.30(1), 89–123 (2005). [CrossRef]
  3. F. Mayinger and O. Feldmann, Optical Measurements: Techniques and Applications (Springer, 2001).
  4. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach Publishers, 1996).
  5. R. S. Barlow, “Laser diagnostics and their interplay with computations to understand turbulent combustion,” Proc. Combust. Inst.31(1), 49–75 (2007). [CrossRef]
  6. I. Boxx, M. Stohr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B.95(1), 23–29 (2009). [CrossRef]
  7. M. Stoehr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst.33(2), 2953–2960 (2011). [CrossRef]
  8. B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B.98(2-3), 581–591 (2010). [CrossRef]
  9. K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B.106(3), 569–575 (2012). [CrossRef]
  10. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011). [CrossRef] [PubMed]
  11. D. Hoffman, K. U. Münch, and A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett.21(7), 525–527 (1996). [CrossRef] [PubMed]
  12. P. J. Emmerman, R. Goulard, R. J. Santoro, and H. G. Semerjian, “Multi-angular absorption diagnostics of a turbulent argon-methane jet,” J. Energy4(2), 70–77 (1980). [CrossRef]
  13. P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys.121(20), 9964–9970 (2004). [CrossRef] [PubMed]
  14. A. M. Chojnacki, G. J. Wolga, and F. C. Gauldin, “Infrared color center laser system for tomographic determination of temperature and species concentration distributions in combusting systems,” Combust. Sci. Technol.134(1-6), 165–181 (1998). [CrossRef]
  15. R. Villarreal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt.44(31), 6786–6795 (2005). [CrossRef] [PubMed]
  16. P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt.44(31), 6578–6592 (2005). [CrossRef] [PubMed]
  17. C. T. Herman, “Image reconstruction from projections - the fundamentals of computerized tomography,” in Computer Science and Applied Mathematics (Academic Press, 1980).
  18. W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun.179(4), 250–255 (2008). [CrossRef]
  19. L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt.47(23), 4186–4192 (2008). [CrossRef] [PubMed]
  20. L. Ma and W. Cai, “Numerical investigation of hyperspectral tomography for simultaneous temperature and concentration imaging,” Appl. Opt.47(21), 3751–3759 (2008). [CrossRef] [PubMed]
  21. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express17(10), 8602–8613 (2009). [CrossRef] [PubMed]
  22. X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt.50(4), A29–A37 (2011). [CrossRef] [PubMed]
  23. K. P. Savage, G. R. Beitel, R. S. Hiers, and R. J. Schulz, “Test capabilities in the AEDC/UTSI J85 turbojet test stand,” in 2007 U. S. Air Force T&E Days (AIAA, 2007)
  24. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007). [CrossRef] [PubMed]
  25. S. I. Chou, D. S. Baer, R. K. Hanson, W. Z. Collison, and T. Q. Ni, “HBr concentration and temperature measurements in a plasma etch reactor using diode laser absorption spectroscopy,” J. Vac. Sci. Technol. A19(2), 477–484 (2001). [CrossRef]
  26. T. Kraetschmer, D. Dagel, and S. T. Sanders, “Simple multiwavelength time-division multiplexed light source for sensing applications,” Opt. Lett.33(7), 738–740 (2008). [CrossRef] [PubMed]
  27. A. W. Caswell, T. Kraetschmer, K. Rein, S. T. Sanders, S. Roy, D. T. Shouse, and J. R. Gord, “Application of time-division-multiplexed lasers for measurements of gas temperature and CH4 and H2O concentrations at 30 kHz in a high-pressure combustor,” Appl. Opt.49(26), 4963–4972 (2010). [CrossRef] [PubMed]
  28. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express17(26), 24013–24019 (2009). [CrossRef] [PubMed]
  29. X. An, A. W. Caswell, J. J. Lipor, and S. T. Sanders, “Determining the optimum wavelength pairs to use for molecular absorption thermometry based on the continuous-spectral lower-state energy,” J. Quant. Spectrosc. Radiat. Transf.112(14), 2355–2362 (2011). [CrossRef]
  30. L. Ma, X. Li, W. Cai, S. Roy, J. R. Gord, and S. T. Sanders, “Selection of multiple optimal absorption transitions for nonuniform temperature sensing,” Appl. Spectrosc.64(11), 1274–1282 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (1723 KB)     
» Media 2: AVI (1540 KB)     
» Media 3: AVI (2277 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited