OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1189–1202

Single-molecule fluorescence imaging of processive myosin with enhanced background suppression using linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC)

Mary Williard Elting, Sabrina R. Leslie, L. Stirling Churchman, Jonas Korlach, Christopher M. J. McFaul, Jason S. Leith, Michael J. Levene, Adam E. Cohen, and James A. Spudich  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1189-1202 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1658 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resolving single fluorescent molecules in the presence of high fluorophore concentrations remains a challenge in single-molecule biophysics that limits our understanding of weak molecular interactions. Total internal reflection fluorescence (TIRF) imaging, the workhorse of single-molecule fluorescence microscopy, enables experiments at concentrations up to about 100 nM, but many biological interactions have considerably weaker affinities, and thus require at least one species to be at micromolar or higher concentration. Current alternatives to TIRF often require three-dimensional confinement, and thus can be problematic for extended substrates, such as cytoskeletal filaments. To address this challenge, we have demonstrated and applied two new single-molecule fluorescence microscopy techniques, linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC), for imaging the processive motion of molecular motors myosin V and VI along actin filaments. Both technologies will allow imaging in the presence of higher fluorophore concentrations than TIRF microscopy. They will enable new biophysical measurements of a wide range of processive molecular motors that move along filamentous tracks, such as other myosins, dynein, and kinesin. A particularly salient application of these technologies will be to examine chemomechanical coupling by directly imaging fluorescent nucleotide molecules interacting with processive motors as they traverse their actin or microtubule tracks.

© 2013 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(170.2520) Medical optics and biotechnology : Fluorescence microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 5, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 15, 2012
Published: January 10, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Mary Williard Elting, Sabrina R. Leslie, L. Stirling Churchman, Jonas Korlach, Christopher M. J. McFaul, Jason S. Leith, Michael J. Levene, Adam E. Cohen, and James A. Spudich, "Single-molecule fluorescence imaging of processive myosin with enhanced background suppression using linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC)," Opt. Express 21, 1189-1202 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Komori, S. Nishikawa, T. Ariga, A. H. Iwane, and T. Yanagida, “Simultaneous measurement of nucleotide occupancy and mechanical displacement in myosin-V, a processive molecular motor,” Biophys. J.96(1), L04–L06 (2009). [CrossRef] [PubMed]
  2. K. Adachi, K. Oiwa, T. Nishizaka, S. Furuike, H. Noji, H. Itoh, M. Yoshida, and K. Kinosita., “Coupling of rotation and catalysis in F(1)-ATPase revealed by single-molecule imaging and manipulation,” Cell130(2), 309–321 (2007). [CrossRef] [PubMed]
  3. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003). [CrossRef] [PubMed]
  4. E. Boukobza, A. Sonnenfeld, and G. Haran, “Immobilization in Surface-Tethered Lipid Vesicles as a New Tool for Single Biomolecule Spectroscopy,” J. Phys. Chem. B105(48), 12165–12170 (2001). [CrossRef]
  5. D. T. Chiu, R. M. Lorenz, and G. D. M. Jeffries, “Droplets for ultrasmall-volume analysis,” Anal. Chem.81(13), 5111–5118 (2009). [CrossRef] [PubMed]
  6. J. J. Benítez, A. M. Keller, and P. Chen, “Nanovesicle trapping for studying weak protein interactions by single-molecule FRET,” Methods Enzymol.472, 41–60 (2010). [CrossRef] [PubMed]
  7. B. Okumus, S. Arslan, S. M. Fengler, S. Myong, and T. Ha, “Single molecule nanocontainers made porous using a bacterial toxin,” J. Am. Chem. Soc.131(41), 14844–14849 (2009). [CrossRef] [PubMed]
  8. A. B. Loveland, S. Habuchi, J. C. Walter, and A. M. van Oijen, “A general approach to break the concentration barrier in single-molecule imaging,” Nat. Methods9(10), 987–992 (2012). [CrossRef] [PubMed]
  9. M. Rief, R. S. Rock, A. D. Mehta, M. S. Mooseker, R. E. Cheney, and J. A. Spudich, “Myosin-V stepping kinetics: a molecular model for processivity,” Proc. Natl. Acad. Sci. U.S.A.97(17), 9482–9486 (2000). [CrossRef] [PubMed]
  10. T. Sakamoto, M. R. Webb, E. Forgacs, H. D. White, and J. R. Sellers, “Direct observation of the mechanochemical coupling in myosin Va during processive movement,” Nature455(7209), 128–132 (2008). [CrossRef] [PubMed]
  11. E. M. De La Cruz, E. M. Ostap, and H. L. Sweeney, “Kinetic mechanism and regulation of myosin VI,” J. Biol. Chem.276(34), 32373–32381 (2001). [CrossRef] [PubMed]
  12. S. M. Block, “Kinesin motor mechanics: binding, stepping, tracking, gating, and limping,” Biophys. J.92(9), 2986–2995 (2007). [CrossRef] [PubMed]
  13. W. Qiu, N. D. Derr, B. S. Goodman, E. Villa, D. Wu, W. Shih, and S. L. Reck-Peterson, “Dynein achieves processive motion using both stochastic and coordinated stepping,” Nat. Struct. Mol. Biol.19(2), 193–200 (2012). [CrossRef] [PubMed]
  14. M. A. DeWitt, A. Y. Chang, P. A. Combs, and A. Yildiz, “Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains,” Science335(6065), 221–225 (2012). [CrossRef] [PubMed]
  15. T. Funatsu, Y. Harada, H. Higuchi, M. Tokunaga, K. Saito, Y. Ishii, R. D. Vale, and T. Yanagida, “Imaging and nano-manipulation of single biomolecules,” Biophys. Chem.68(1-3), 63–72 (1997). [CrossRef] [PubMed]
  16. A. Ishijima, H. Kojima, T. Funatsu, M. Tokunaga, H. Higuchi, H. Tanaka, and T. Yanagida, “Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin,” Cell92(2), 161–171 (1998). [CrossRef] [PubMed]
  17. M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun.235(1), 47–53 (1997). [CrossRef] [PubMed]
  18. K. Oiwa, J. F. Eccleston, M. Anson, M. Kikumoto, C. T. Davis, G. P. Reid, M. A. Ferenczi, J. E. Corrie, A. Yamada, H. Nakayama, and D. R. Trentham, “Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives,” Biophys. J.78(6), 3048–3071 (2000). [CrossRef] [PubMed]
  19. T. Komori, S. Nishikawa, T. Ariga, A. H. Iwane, and T. Yanagida, “Measurement system for simultaneous observation of myosin V chemical and mechanical events,” Biosystems93(1-2), 48–57 (2008). [CrossRef] [PubMed]
  20. M. W. Elting, Z. Bryant, J. C. Liao, and J. A. Spudich, “Detailed tuning of structure and intramolecular communication are dispensable for processive motion of myosin VI,” Biophys. J.100(2), 430–439 (2011). [CrossRef] [PubMed]
  21. H. L. Sweeney, H. Park, A. B. Zong, Z. Yang, P. R. Selvin, and S. S. Rosenfeld, “How myosin VI coordinates its heads during processive movement,” EMBO J.26(11), 2682–2692 (2007). [CrossRef] [PubMed]
  22. Y. Oguchi, S. V. Mikhailenko, T. Ohki, A. O. Olivares, E. M. De La Cruz, and S. Ishiwata, “Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function,” Proc. Natl. Acad. Sci. U.S.A.105(22), 7714–7719 (2008). [CrossRef] [PubMed]
  23. A. R. Dunn, P. Chuan, Z. Bryant, and J. A. Spudich, “Contribution of the myosin VI tail domain to processive stepping and intramolecular tension sensing,” Proc. Natl. Acad. Sci. U.S.A.107(17), 7746–7750 (2010). [CrossRef] [PubMed]
  24. J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians, R. Cicero, S. Clark, R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner, P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns, X. Kong, R. Kuse, Y. Lacroix, S. Lin, P. Lundquist, C. Ma, P. Marks, M. Maxham, D. Murphy, I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra, G. Shen, J. Sorenson, A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J. Wegener, D. Wu, A. Yang, D. Zaccarin, P. Zhao, F. Zhong, J. Korlach, and S. Turner, “Real-time DNA sequencing from single polymerase molecules,” Science323(5910), 133–138 (2009). [CrossRef] [PubMed]
  25. S. Uemura, C. E. Aitken, J. Korlach, B. A. Flusberg, S. W. Turner, and J. D. Puglisi, “Real-time tRNA transit on single translating ribosomes at codon resolution,” Nature464(7291), 1012–1017 (2010). [CrossRef] [PubMed]
  26. S. R. Leslie, A. P. Fields, and A. E. Cohen, “Convex lens-induced confinement for imaging single molecules,” Anal. Chem.82(14), 6224–6229 (2010). [CrossRef] [PubMed]
  27. L. S. Churchman, Z. Okten, R. S. Rock, J. F. Dawson, and J. A. Spudich, “Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time,” Proc. Natl. Acad. Sci. U.S.A.102(5), 1419–1423 (2005). [CrossRef] [PubMed]
  28. J.-C. Liao, M. W. Elting, S. L. Delp, J. A. Spudich, and Z. Bryant, “Engineered myosin VI motors reveal minimal structural determinants of directionality and processivity,” J. Mol. Biol.392(4), 862–867 (2009). [CrossRef] [PubMed]
  29. J. D. Pardee and J. A. Spudich, “Purification of muscle actin,” Methods Cell Biol.24, 271–289 (1982). [CrossRef] [PubMed]
  30. J. Korlach, P. J. Marks, R. L. Cicero, J. J. Gray, D. L. Murphy, D. B. Roitman, T. T. Pham, G. A. Otto, M. Foquet, and S. W. Turner, “Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures,” Proc. Natl. Acad. Sci. U.S.A.105(4), 1176–1181 (2008). [CrossRef] [PubMed]
  31. J. Wenger, P.-F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express13(18), 7035–7044 (2005). [CrossRef] [PubMed]
  32. J. A. Theriot and T. J. Mitchison, “The nucleation-release model of actin filament dynamics in cell motility,” Trends Cell Biol.2(8), 219–222 (1992). [CrossRef] [PubMed]
  33. R. Littlefield and V. M. Fowler, “A minor actin catastrophe,” Nat. Cell Biol.4(9), E209–E211 (2002). [CrossRef] [PubMed]
  34. I. Fujiwara, S. Takahashi, H. Tadakuma, T. Funatsu, and S. Ishiwata, “Microscopic analysis of polymerization dynamics with individual actin filaments,” Nat. Cell Biol.4(9), 666–673 (2002). [CrossRef] [PubMed]
  35. R. Carballido-López, “The bacterial actin-like cytoskeleton,” Microbiol. Mol. Biol. Rev.70(4), 888–909 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited