OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1310–1316

A compact and low loss Y-junction for submicron silicon waveguide

Yi Zhang, Shuyu Yang, Andy Eu-Jin Lim, Guo-Qiang Lo, Christophe Galland, Tom Baehr-Jones, and Michael Hochberg  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1310-1316 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed a compact, low-loss and wavelength insensitive Y-junction for submicron silicon waveguide using finite difference time-domain (FDTD) simulation and particle swarm optimization (PSO), and fabricated the device in a 248 nm complementary metal-oxide-semiconductor (CMOS) compatible process. Measured average insertion loss is 0.28 ± 0.02 dB, uniform across an 8-inch wafer. The device footprint is less than 1.2 μm x 2 μm, an order of magnitude smaller than typical multimode interferometers (MMIs) and directional couplers.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1360) Optical devices : Beam splitters
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: November 8, 2012
Revised Manuscript: December 28, 2012
Manuscript Accepted: December 30, 2012
Published: January 11, 2013

Yi Zhang, Shuyu Yang, Andy Eu-Jin Lim, Guo-Qiang Lo, Christophe Galland, Tom Baehr-Jones, and Michael Hochberg, "A compact and low loss Y-junction for submicron silicon waveguide," Opt. Express 21, 1310-1316 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express20(10), 11316–11320 (2012). [CrossRef] [PubMed]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  3. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010). [CrossRef]
  4. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010). [CrossRef]
  5. http://www.opsisfoundry.org, http://www.epixfab.eu .
  6. T. Baehr-Jones, T. Pinguet, P. Lo Guo-Qiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours in silicon photonics,” Nature6, 207–208 (2012).
  7. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012). [CrossRef] [PubMed]
  8. A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron.E85-C, 1033–1038 (2002).
  9. D. Van Thourhout, W. Bogaerts, P. Dumon, G. Roelkens, J. Van Campenhout, and R. Baets, “Functional silicon wire waveguides,” Proc. Integrated Photonics Research and Applications (2006).
  10. Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1 x 8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys.43(8A), 5085–5087 (2004). [CrossRef]
  11. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express16(26), 21456–21461 (2008). [CrossRef] [PubMed]
  12. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, “Ultralow-loss 3-dB photonic crystal waveguide splitter,” Opt. Lett.29(14), 1623–1625 (2004). [CrossRef] [PubMed]
  13. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett.17(3), 585–587 (2005). [CrossRef]
  14. H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, “Compact and fast photonic crystal silicon optical modulators,” Opt. Express20(20), 22465–22474 (2012). [CrossRef] [PubMed]
  15. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett.34(18), 2760–2762 (2009). [CrossRef] [PubMed]
  16. J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. IEEE Intern. Conf. Neural Networks (1995).
  17. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnectis,” IEEE Trans. Antenn. Propag.52(2), 397–407 (2004). [CrossRef]
  18. http://www.lumerical.com/tcad-products/fdtd/ .
  19. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011). [CrossRef]
  20. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crysal circuits in silicon-on-insulator using 193 nm optical lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009). [CrossRef]
  21. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express18(23), 23598–23607 (2010). [CrossRef] [PubMed]
  22. A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J.3(3), 567–579 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited