OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 1344–1352

Dielectric resonator nanoantennas at visible frequencies

Longfang Zou, Withawat Withayachumnankul, Charan M. Shah, Arnan Mitchell, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 1344-1352 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2393 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Drawing inspiration from radio-frequency technologies, we propose a realization of nano-scale optical dielectric resonator antennas (DRAs) functioning in their fundamental mode. These DRAs operate via displacement current in a low-loss high-permittivity dielectric, resulting in reduced energy dissipation in the resonators. The designed nonuniform planar DRA array on a metallic plane imparts a sequence of phase shifts across the wavefront to create beam deflection off the direction of specular reflection. The realized array clearly demonstrates beam deflection at 633 nm. Despite the loss introduced by field interaction with the metal substrate, the proposed low-loss resonator concept is a first step towards nanoantennas with enhanced efficiency. The compact planar structure and technologically relevant materials promise monolithic circuit integration of DRAs.

© 2013 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(260.5740) Physical optics : Resonance
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: November 26, 2012
Revised Manuscript: December 26, 2012
Manuscript Accepted: December 26, 2012
Published: January 11, 2013

Longfang Zou, Withawat Withayachumnankul, Charan M. Shah, Arnan Mitchell, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux, "Dielectric resonator nanoantennas at visible frequencies," Opt. Express 21, 1344-1352 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett.59, 3225–3227 (1991). [CrossRef]
  2. I. Wilke, W. Herrmann, and F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B58, 87–95 (1994). [CrossRef]
  3. C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol.39, 123–183 (1998). [CrossRef]
  4. C. Fumeaux, J. Alda, and G. D. Boreman, “Lithographic antennas at visible frequencies,” Opt. Lett.24, 1629–1631 (1999). [CrossRef]
  5. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011). [CrossRef] [PubMed]
  6. M. L. Brongersma, “Plasmonics: Engineering optical nanoantennas,” Nat. Photonics2, 270–272 (2008). [CrossRef]
  7. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics1, 438–483 (2009). [CrossRef]
  8. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011). [CrossRef]
  9. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Nano-plasmonic antennas in the near infrared regime,” J. Phys. Condens. Matter24, 073202 (2012). [CrossRef] [PubMed]
  10. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98, 026104 (2007). [CrossRef] [PubMed]
  11. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7, 496–501 (2007). [CrossRef] [PubMed]
  12. Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12, 4853–4858 (2012). [CrossRef] [PubMed]
  13. J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas,” Phys. Rev. B: Condens. Matter79, 195104 (2009). [CrossRef]
  14. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics4, 312–315 (2010). [CrossRef]
  15. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  16. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1, 641–648 (2007). [CrossRef]
  17. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009). [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  19. A. Petosa and A. Ittipiboon, “Dielectric resonator antennas: A historical review and the current state of the art,” IEEE Antennas Propag. Mag.52, 91–116 (2010). [CrossRef]
  20. S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans. Antennas Propag.31, 406–412 (1983). [CrossRef]
  21. Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter, and R. Vahldieck, “Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band,” IEEE Trans. Antennas Propag.56, 3589–3592 (2008). [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B: Condens. Matter6, 4370–4379 (1972). [CrossRef]
  23. K. M. Luk and K. W. Leung, Dielectric Resonator Antennas (Research Studies Press, Hertfordshire, U.K., 2003).
  24. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33, 779–781 (2008). [CrossRef] [PubMed]
  25. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011). [CrossRef] [PubMed]
  26. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011). [CrossRef] [PubMed]
  27. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science335, 427–427 (2012). [CrossRef]
  28. J. Huang and J. A. Encinar, Reflectarray Antenna (Wiley-IEEE Press, 2007). [CrossRef]
  29. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett.28, 1870–1872 (2003). [CrossRef] [PubMed]
  30. MicroChem Corporation, “Datasheet for Poly(methyl methacrylate) (PMMA),”.
  31. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).
  32. A. Alù and N. Engheta, “A Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B: Condens. Matter78, 195111 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (18365 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited