OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 135–144

Influence of cubic nonlinearity on accuracy of polarization transformation by means of a quarter-wave plate

M. S. Kuzmina, E. A. Khazanov, A. A. Shaykin, A. N. Stepanov, and Yu. Malkov  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 135-144 (2013)
http://dx.doi.org/10.1364/OE.21.000135


View Full Text Article

Enhanced HTML    Acrobat PDF (2077 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the propagation of powerful laser radiation in an anisotropic medium with natural birefringence and cubic nonlinearity. By the example of a quarter-wave plate, we show theoretically and experimentally that, under the simultaneous influence of linear birefringence and nonlinearity, the accuracy of polarization transformation decreases in proportion to squared В-integral.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 31, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 10, 2012
Published: January 2, 2013

Citation
M. S. Kuzmina, E. A. Khazanov, A. A. Shaykin, A. N. Stepanov, and Yu. Malkov, "Influence of cubic nonlinearity on accuracy of polarization transformation by means of a quarter-wave plate," Opt. Express 21, 135-144 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi, A. J. Mackinnon, P. Patel, M. Galimberti, and L. A. Gizzi, “Proton imaging detection of transient electromagnetic fields in laser-plasma interactions,” Rev. Sci. Instrum.74(3), 1688–1694 (2003). [CrossRef]
  2. S. V. Bulanov and V. S. Khoroshkov, “Feasibility of using laser ion accelerators in proton therapy,” Plasma Phys. Rep.28(5), 453–456 (2002). [CrossRef]
  3. M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett.86(3), 436–439 (2001). [CrossRef] [PubMed]
  4. B. Shen and Zh. Xu, “Transparency of an overdense plasma layer,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 056406–056412 (2001). [CrossRef] [PubMed]
  5. A. Macchi, “A femtosecond neutron source,” Appl. Phys. B82(3), 337–340 (2006). [CrossRef]
  6. X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, and J. E. Chen, “Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime,” Phys. Rev. Lett.100(13), 135003 (2008). [CrossRef] [PubMed]
  7. D.-H. Kwon, K. Lee, S. H. Park, and Y. U. Jeong, “The effect of the transparency of an overdense plasma on proton beam generation by an intense ultra-short laser pulse,” J. Korean Phys. Soc.49, 347–353 (2006).
  8. S. N. Vlasov, V. I. Kryzhanovskiĭ, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron.12(1), 7–10 (1982). [CrossRef]
  9. Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett.3, 86–89 (1966).
  10. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett.12(18), 507–509 (1964). [CrossRef]
  11. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP31, 903–911 (1970).
  12. D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun.21(2), 241–242 (1977). [CrossRef]
  13. M. S. Kuzmina, M. A. Martyanov, A. K. Poteomkin, E. A. Khazanov, and A. A. Shaykin, “Theoretical and experimental study of laser radiation propagating in a medium with thermally induced birefringence and cubic nonlinearity,” Opt. Express19(22), 21977–21988 (2011). [CrossRef] [PubMed]
  14. R. J. Pressley, Handbook of Lasers With selected Data on Optical Technology (Chemical Rubber Co, Cleveland, 1979).
  15. R. L. Suthrland, Handbook of nonlinear optics, Marcel Dekker (New York, 2003).
  16. H. R. Phillip, Handbook of Optical Constants of Solids (Academic Press, 1985).
  17. S. S. Ballard, K. A. McCarthy, and W. L. Wolfe, Optical Materials for Infrared Instrumentation (IRIA-University of Michigan, Report #2389–11-S, 1959).
  18. A. A. Babin, A. M. Kiselev, A. M. Sergeev, and A. N. Stepanov, “Terawatt femtosecond Ti:sapphire laser system,” Quantum Electron.31(7), 623–626 (2001). [CrossRef]
  19. N. G. Bondarenko, I. V. Eremina, and A. I. Makarov, “Measurement of nonlinear susceptibility tensor χijkl for DKDP crystals,” in Proceedings of the Five All-Union Conference on Laser Optics (Gosudarstvenny Optichesky Institut, Leningrad, 1987), pp. 37–40.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited