OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 145–153

A BOTDA with break interrogation function over 72 km sensing length

Junhui Hu, Xuping Zhang, Yuguo Yao, and Xiaodong Zhao  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 145-153 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1576 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A BOTDA with the capacity of break interrogation is proposed and demonstrated experimentally. In our configuration, coherent detection and double sideband probe method are employed to enhance the signal-to-noise ratio (SNR) and to effectively reduce nonlocal effects, respectively. Without amplification, a 72 km sensing range with 5-meter resolution and an estimated temperature uncertainty of 1.8 °C are obtained. Benefiting from the flexible optical configuration, this sensor system has the capacity of break interrogation as a coherent optical time domain reflectometry (COTDR) if there is a break in the fiber under test (FUT). The sensor achieves a dynamic range of 36 dB with a 100 m spatial resolution, which offers an excellent solution for the requisite of two-end-access in BOTDA, and significantly enhances the robustness of the sensing system.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:

Original Manuscript: November 2, 2012
Revised Manuscript: December 13, 2012
Manuscript Accepted: December 13, 2012
Published: January 2, 2013

Junhui Hu, Xuping Zhang, Yuguo Yao, and Xiaodong Zhao, "A BOTDA with break interrogation function over 72 km sensing length," Opt. Express 21, 145-153 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011). [CrossRef] [PubMed]
  2. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995). [CrossRef]
  3. X. Bao, D. J. Webb, and D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett.18(7), 552–554 (1993). [CrossRef] [PubMed]
  4. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993). [CrossRef] [PubMed]
  5. S. B. Cho, J. J. Lee, and I. B. Kwon, “Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor,” Opt. Express12(18), 4339–4346 (2004). [CrossRef] [PubMed]
  6. V. P. Kalosha, E. A. Ponomarev, L. Chen, and X. Bao, “How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses,” Opt. Express14(6), 2071–2078 (2006). [CrossRef] [PubMed]
  7. P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J.8(7), 1067–1072 (2008). [CrossRef]
  8. A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin Scattering distributed fiber-optic sensors: experimental results,” Meas. Sci. Technol.16(4), 900–908 (2005). [CrossRef]
  9. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010). [CrossRef] [PubMed]
  10. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J.9(6), 633–634 (2009). [CrossRef]
  11. A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA,” J. Lightwave Technol.30(8), 1066–1072 (2012). [CrossRef]
  12. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett.36(2), 232–234 (2011). [CrossRef] [PubMed]
  13. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011). [CrossRef] [PubMed]
  14. S. Martín-Lopez, M. Alcón-Camas, F. Rodríguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010). [CrossRef] [PubMed]
  15. F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin Fiber Sensor Assisted by First-Order Raman Amplification,” J. Lightwave Technol.28(15), 2162–2172 (2010). [CrossRef]
  16. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011). [CrossRef] [PubMed]
  17. Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, and M. Pervizpour, “Distributed temperature sensing system based on Rayleigh scattering BOTDA,” IEEE Sens. J.11(2), 399–403 (2011). [CrossRef]
  18. R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express19(24), 23845–23856 (2011). [CrossRef] [PubMed]
  19. J. P. King, D. F. Smith, K. Richards, P. Timson, R. E. Epworth, and S. Wright, “Development of a coherent OTDR instrument,” J. Lightwave Technol.5(4), 616–624 (1987). [CrossRef]
  20. H. Izumita, S. Furukawa, Y. Koyamada, and I. Sankawa, “Fading noise reduction in coherent OTDR,” IEEE Photon. Technol. Lett.4(2), 201–203 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited