OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 295–304

Plasmonic light harvesting for multicolor infrared thermal detection

Feilong Mao, Jinjin Xie, Shiyi Xiao, Susumu Komiyama, Wei Lu, Lei Zhou, and Zhenghua An  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 295-304 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3042 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we combined experiments and theory to study the optical properties of a plasmonic cavity consisting of a perforated metal film and a flat metal sheet separated by a semiconductor spacer. Three different types of optical modes are clearly identified—the propagating and localized surface plasmons on the perforated metal film and the Fabry-Perot modes inside the cavity. Interactions among them lead to a series of hybridized eigenmodes exhibiting excellent spectral tunability and spatially distinct field distributions, making the system particularly suitable for multicolor infrared light detections. As an example, we design a two-color detector protocol with calculated photon absorption efficiencies enhanced by more than 20 times at both colors, reaching ~42.8% at f1 = 20.0THz (15μm in wavelength) and ~46.2% at f2 = 29.5THz (~10.2μm) for a 1μm total thickness of sandwiched quantum wells.

© 2013 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: October 8, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 19, 2012
Published: January 4, 2013

Feilong Mao, Jinjin Xie, Shiyi Xiao, Susumu Komiyama, Wei Lu, Lei Zhou, and Zhenghua An, "Plasmonic light harvesting for multicolor infrared thermal detection," Opt. Express 21, 295-304 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Krier, Mid-Infrared Semiconductor Optoelectronics (Springer, 2005).
  2. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, 2007).
  3. A. Rogalski, “Material considerations for third generation infrared photon detectors,” Infrared Phys. Technol.50(2-3), 240–252 (2007). [CrossRef]
  4. D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.)131(8), 875–885 (2006). [CrossRef] [PubMed]
  5. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009). [CrossRef]
  6. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  7. S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol.20(5), 473–480 (2005). [CrossRef]
  8. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996), Chap. 8.
  9. S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, D. Z. Ting, C. J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S. C. Wang, W. Li, P. D. LeVan, and M. Z. Tidrow, “Demonstration of Megapixel Dual-Band QWIP Focal Plane Array,” J. Quantum Electron.46(2), 285–293 (2010). [CrossRef]
  10. S. S. Li, “Recent progress in quantum well infrared photodetectors and focal plane arrays for IR imaging applications,” Mater. Chem. Phys.50(3), 188–194 (1997). [CrossRef]
  11. S. D. Gunapala, S. V. Bandara, J. K. Liu, S. B. Rafol, J. M. Mumolo, C. A. Shott, R. Jones, J. Woolaway, J. M. Fastenau, A. K. Liu, M. Jhabvala, and K. K. Choi, “640 x 512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays,” Infrared Phys. Technol.44(5-6), 411–425 (2003). [CrossRef]
  12. K. K. Choi, M. D. Jhabvala, and R. J. Peralta, “Voltage-Tunable Two-Color Corrugated-QWIP Focal Plane Arrays,” IEEE Electron. Dev. Lett.29(9), 1011–1013 (2008). [CrossRef]
  13. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express17(25), 23160–23168 (2009). [CrossRef] [PubMed]
  14. C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. H. Huang, and S. Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010). [CrossRef] [PubMed]
  15. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  16. G. W. Lu, B. L. Cheng, H. Shen, Y. L. Zhou, Z. H. Chen, G. Z. Yang, G. Tillement, S. Roux, and P. Perriat, “Fabry-Perot type sensor with surface plasmon resonance,” Appl. Phys. Lett.89, 22394 (2006).
  17. B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry-Perot resonantor,” J. Appl. Phys.110(6), 066102 (2011). [CrossRef]
  18. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010). [CrossRef]
  19. CONCERTO 7.0, Vector Fields Limited, England (2008).
  20. Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies,” Phys. Rev. Lett.102(18), 186402 (2009). [CrossRef] [PubMed]
  21. More accurately, in the deep subwavelength region(i.e., S<<λ1/2nGaAs), f1 is insensitive to S, as will be seen in Fig. 3.
  22. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  23. Y. W. Jiang, L. D. C. Tzuang, Y. H. Ye, Y. T. Wu, M. W. Tsai, C. Y. Chen, and S. C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express17(4), 2631–2637 (2009). [CrossRef] [PubMed]
  24. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007). [CrossRef]
  25. H. Wang, Z. An, C. Qu, S. Xiao, L. Zhou, S. Komiyama, W. Lu, X. Shen, and P. Chu, “Optimization of Optoelectronic Plasmonic Structures,” Plasmonics6(2), 319–325 (2011). [CrossRef]
  26. A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B76(19), 195414 (2007). [CrossRef]
  27. The formula for neff in Eq. (2) applies to the case where the insulators on two sides of the metal layer are half-infinite. Here we use same formula to roughly esitmate neff value for our plasmonic cavity case.
  28. Due to the limitation of L<P for a cross hole array, there remains a small fraction of PSP {0, ± 1} contribution for f1 in H-cavity.
  29. The PSP {0, ± 2} is readily coupled to LSP which is predicted from Eq. (2) to be near 40THz. As a result, PSP {0, ± 2} is highly hybridized with LSP mode.
  30. y-polarized excitation is used in FDTD simulation, therefore Ex≈0 for all resonant modes, and only {0, ± 1} (but not { ± 1,0}) PSP mode contributes in calculaitons. In experiments, both { ± 1,0} and {0, ± 1} modes contribute equally to the measured reflection spectra since cross hole shape is insensitive to polarization.
  31. J. L. Pan and C. G. Fonstad., “Theory, fabrication and characterization of quantum well infrared photodetectors,” Mater. Sci. Eng. Rep.28(3-4), 65–147 (2000). [CrossRef]
  32. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010). [CrossRef]
  33. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, and L. Sorba, “Microcavity Polariton Splitting of Intersubband Transitions,” Phys. Rev. Lett.90(11), 116401 (2003). [CrossRef] [PubMed]
  34. In case of 45° edge facet incidence, the device responses only half of the unpolarized excitation due to the selection rule. For optimized polarization of the excitation, the simulated efficiencies reach ~4% for our QWs, which agree well with the previously reported values in Ref.[2].
  35. These enchancement factors increase at lower electron densities. For example, at Ns = 1 × 1011/cm2, the enhancement factors are ~55 at f1 (cavity: 23.0%; non-plasmonic: 0.84%; single-layer: 2.7%) and ~45 at f2 (cavity: 18.8%; non-plasmonic: 0.84%; single-layer: 0.3%).
  36. X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited