OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 382–390

A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance

Cédric Perrotton, Ruud. J. Westerwaal, Nicolas Javahiraly, Martin Slaman, Herman Schreuders, Bernard Dam, and Patrick Meyrueis  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 382-390 (2013)
http://dx.doi.org/10.1364/OE.21.000382


View Full Text Article

Enhanced HTML    Acrobat PDF (860 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report for the first time on the experimental response of a Surface Plasmon Resonance fiber optic sensor based on wavelength modulation for hydrogen sensing. This approach of measuring the hydrogen concentration makes the sensor insensitive to intensity fluctuations. The intrinsic fiber sensor developed provides remote sensing and enables the possibility of multi-points sensing. The sensor consists of a multilayer of 35 nm Au / 180 nm SiO2/ Pd deposited on a step- index multimode fiber core. The sensitivity and selectivity of the sensor are optimal at a Pd thickness of 3.75 nm. The sensor is sensitive to a hydrogen concentration ranging between 0.5 and 4% H2 in Ar, with a response time less than 15 s.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: April 12, 2012
Revised Manuscript: June 25, 2012
Manuscript Accepted: June 26, 2012
Published: January 4, 2013

Citation
Cédric Perrotton, Ruud. J. Westerwaal, Nicolas Javahiraly, Martin Slaman, Herman Schreuders, Bernard Dam, and Patrick Meyrueis, "A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance," Opt. Express 21, 382-390 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-382


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  2. D. Luna-Moreno, D. Monzon-Hernandez, S. Calixto-Carrera, and R. Espinosa-Luna, “Tailored Pd-Au layer produced by conventional evaporation process for hydrogen sensing,” Opt. Lasers Eng.49(6), 693–697 (2011). [CrossRef]
  3. A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol.17(5), 1124–1128 (2006). [CrossRef]
  4. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B60(1), 27–34 (1999). [CrossRef]
  5. M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad, “Active fiber Bragg grating hydrogen sensors for all-temperature operation,” IEEE Photon. Technol. Lett.19(5), 255–257 (2007). [CrossRef]
  6. R. Maier, B. Jones, J. Barton, S. McCulloch, T. Allsop, J. Jones, and I. Bennion, “Fibre optics in palladium-based hydrogen sensing,” J. Opt. A, Pure Appl. Opt.9(6), S45–S59 (2007). [CrossRef]
  7. X. Wei, T. Wei, H. Xiao, and Y. Lin, “Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection,” Sens. Actuators B134(2), 687–693 (2008). [CrossRef]
  8. K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer,” Opt. Lasers Eng.47(10), 1018–1022 (2009). [CrossRef]
  9. L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, and U. Banach, “Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications,” Int. J. Hydrogen Energy35(1), 373–384 (2010). [CrossRef]
  10. B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators4, 299–304 (1983). [CrossRef]
  11. I. Garcés, C. Aldea, and J. Mateo, “Four-layer chemical fibre optic plasmon-based sensor,” Sens. Actuators B7(1-3), 771–774 (1992). [CrossRef]
  12. C. Lavers and J. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sens. Actuators B22(1), 75–81 (1994). [CrossRef]
  13. B. Chadwick and M. Gal, “Enhanced optical detection of hydrogen using the excitation of surface plasmons in palladium,” Appl. Surf. Sci.68(1), 135–138 (1993). [CrossRef]
  14. X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol.13(1), 118–124 (2002). [CrossRef]
  15. C. Perrotton, M. Slaman, N. Javahiraly, H. Schreuders, B. Dam, and P. Meyrueis, “Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection,” Opt. Eng.50(1), 014403 (2011). [CrossRef]
  16. D. Nau, A. Seidel, R. B. Orzekowsky, S. H. Lee, S. Deb, and H. Giessen, “Hydrogen sensor based on metallic photonic crystal slabs,” Opt. Lett.35(18), 3150–3152 (2010). [CrossRef] [PubMed]
  17. C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett.7(10), 3122–3127 (2007). [CrossRef] [PubMed]
  18. C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zorić, “Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry,” Nano Lett.10(9), 3529–3538 (2010). [CrossRef] [PubMed]
  19. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  20. E. Maeda, S. Mikuriya, K. Endo, I. Yamada, A. Suda, and J. J. Delaunay, “Optical hydrogen detection with periodic subwavelength palladium hole arrays,” Appl. Phys. Lett.95(13), 133504 (2009). [CrossRef]
  21. N. R. Fong, P. Berini, and R. N. Tait, “Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide,” Sens. Act. B, 285–291 (2011).
  22. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B12(3), 213–220 (1993). [CrossRef]
  23. C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, and P. Meyrueis, , “Fiber optic Surface Plasmon Resonance sensor based on wavelength modulation for hydrogen sensing,” Opt. Express19(S6Suppl 6), A1175–A1183 (2011). [CrossRef] [PubMed]
  24. K. von Rottkay, M. Rubin, and P. Duine, “Refractive index changes of Pd-coated magnesium lanthanide switchable mirrors upon hydrogen insertion,” J. Appl. Phys.85(1), 408–413 (1999). [CrossRef]
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  26. I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D9(17), 2423–2432 (1976). [CrossRef]
  27. R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, “Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes,” Acta Mater.57(4), 1209–1219 (2009). [CrossRef]
  28. Y. Pivak, R. Gremaud, K. Gross, M. Gonzalez-Silveira, A. Walton, D. Book, H. Schreuders, B. Dam, and R. Griessen, “Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography,” Scr. Mater.60(5), 348–351 (2009). [CrossRef]
  29. F. A. Lewis, ed., The Palladium Hydrogen System (Academic Press, London and New York, 1967).
  30. R. Gremaud, Hydrogenography: A Thin Film Optical Combinatorial Study of Hydrogen Storage Materials (Ipskamp, 2008).
  31. X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B67(1-2), 57–67 (2000). [CrossRef]
  32. Z. Zhao, M. Carpenter, H. Xia, and D. Welch, “All-optical hydrogen sensor based on a high alloy content palladium thin film,” Sens. Actuators B113(1), 532–538 (2006). [CrossRef]
  33. Z. Zhao, Y. Sevryugina, M. A. Carpenter, D. Welch, and H. Xia, “All-optical hydrogen-sensing materials based on tailored palladium alloy thin films,” Anal. Chem.76(21), 6321–6326 (2004). [CrossRef] [PubMed]
  34. J. Huiberts, J. Rector, R. Wijngaarden, S. Jetten, D. De Groot, B. Dam, N. Koeman, R. Griessen, B. Hjorvarsson, S. Olafsson, and Y. S. Cho, “Synthesis of yttriumtrihydride films for ex-situ measurements,” J. Alloy. Comp.239(2), 158–171 (1996). [CrossRef]
  35. B. Fisher and D. Malocha, “A study on the aging of ultra-thin Palladium films on SAW hydrogen gas sensors,” in IEEE Frequency Control Symposium, pp. 242–247 (2010).
  36. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, “Hydrogen sensors and switches from electrodeposited palladium mesowire arrays,” Science293(5538), 2227–2231 (2001). [CrossRef] [PubMed]
  37. K. Kalli, A. Othonos, and C. Christofides, “Characterization of reflectivity inversion, α-and β-phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates,” J. Appl. Phys.91(6), 3829–3840 (2002). [CrossRef]
  38. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett.11, 4366–4369 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited