OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 391–403

Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency

Chih-Hsien Cheng, Yu-Chung Lien, Chung-Lun Wu, and Gong-Ru Lin  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 391-403 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The enhanced recombination and external quantum efficiency (EQE) of the multi-color metal-oxide-semiconductor light-emitting diodes (MOSLEDs) made on the SiOx film with buried Si quantum dots (Si-QDs) grown by plasma-enhanced chemical vapor deposition are demonstrated. By shrinking Si-QD size from 4.2 to 1.8 nm with increasing RF plasma power from 20 to 50 W, these MOSLEDs enhance the maximal electroluminescent (EL) power from 0.1 to 0.7 μW. This is mainly attributed to the enhanced recombination rate by enlarging the overlap between electron and hole wave-functions. As evidence, the photoluminescent lifetime is significantly shortened from 5 µs to 0.31µs due to the enhanced direct recombination in smaller Si-QDs. The corresponding power-current slope and EQE are observed to increase from 0.09 to 5.7 mW/A and from 1.9 × 10−5 to 2.4%, respectively. The EL enhancement originates from shorter wavelength and stronger carrier confinement within Si-QDs with smaller size, as confirmed by the increased barrier height at the ITO/SiOx:Si-QD interface from 1.05 to 3.62 eV. The smaller and denser Si-QDs result in a current endurance to operate the MOSLED at breakdown edge with highest power conversion efficiency, thus providing a maximal blue-light EL power at 0.7 μW with the highest EQE of 2.4%.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(230.3670) Optical devices : Light-emitting diodes
(310.1860) Thin films : Deposition and fabrication
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: September 11, 2012
Revised Manuscript: November 10, 2012
Manuscript Accepted: November 13, 2012
Published: January 4, 2013

Chih-Hsien Cheng, Yu-Chung Lien, Chung-Lun Wu, and Gong-Ru Lin, "Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency," Opt. Express 21, 391-403 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Koch, V. Petrova-Koch, and T. Muschik, “The luminescence of porous Si: the case for the surface state mechanism,” J. Lumin.57(1-6), 271–281 (1993). [CrossRef]
  2. S. M. Prokes, “Light emission in thermally oxidized porous silicon: Evidence for oxide-related luminescence,” Appl. Phys. Lett.62(25), 3244–3246 (1993). [CrossRef]
  3. B. Delley and E. F. Steigmeier, “Quantum confinement in Si nanocrystals,” Phys. Rev. B Condens. Matter47(3), 1397–1400 (1993). [CrossRef] [PubMed]
  4. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Phys. Rev. Lett.86(7), 1355–1357 (2001). [CrossRef] [PubMed]
  5. P. D. Nguyen, D. M. Kepaptsoglou, Q. M. Ramasse, and A. Olsen, “Direct observation of quantum confinement of Si nanocrystals in Si-rich nitrides,” Phys. Rev. B85(8), 085315 (2012). [CrossRef]
  6. W. D. A. M. de Boer, D. Timmerman, K. Dohnalová, I. N. Yassievich, H. Zhang, W. J. Buma, and T. Gregorkiewicz, “Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals,” Nat. Nanotechnol.5(12), 878–884 (2010). [CrossRef] [PubMed]
  7. J. Linnros and N. Lalic, “High quantum efficiency for a porous silicon light emitting diode under pulsed operation,” Appl. Phys. Lett.66(22), 3048–3050 (1995). [CrossRef]
  8. G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys.97(9), 094306 (2005). [CrossRef]
  9. M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101(10), 103504 (2007). [CrossRef]
  10. D. Li, X. Zhang, L. Jin, and D. Yang, “Structure and luminescence evolution of annealed Europium-doped silicon oxides films,” Opt. Express18(26), 27191–27196 (2010). [CrossRef] [PubMed]
  11. E. H. Snow, “Fowler-Nordheim tunneling in SiO2 films,” Solid State Commun.5(10), 813–815 (1967). [CrossRef]
  12. M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys.40(1), 278–283 (1969). [CrossRef]
  13. Z. A. Weinberg, “On tunneling in metal-oxide-silicon structures,” J. Appl. Phys.53(7), 5052–5056 (1982). [CrossRef]
  14. G. Chakraborty, S. Chattopadhyay, C. K. Sarkar, and C. Pramanik, “Tunneling current at the interface of silicon and silicon dioxide partly embedded with silicon nanocrystals in metal oxide semiconductor structures,” J. Appl. Phys.101(2), 024315 (2007). [CrossRef]
  15. D. Comedi, O. H. Y. Zalloum, J. Wojcik, and P. Mascher, “Light emission from hydrogenated and unhydrogenated Si-nanocrystal/Si dioxide composites based on PECVD-grown Si-rich Si oxide films,” IEEE J. Sel. Top. Quantum Electron.12(6), 1561–1569 (2006). [CrossRef]
  16. D. Comedi, O. H. Y. Zalloum, E. A. Irving, J. Wojcik, T. Roschuk, M. J. Flynn, and P. Mascher, “X-ray-diffraction study of crystalline Si nanocluster formation in annealed silicon-rich silicon oxides,” J. Appl. Phys.99(2), 023518 (2006). [CrossRef]
  17. M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. II. Defect states electroluminescence,” J. Appl. Phys.104(8), 083505 (2008). [CrossRef]
  18. G.-R. Lin, Y.-H. Pai, C.-T. Lin, and C.-C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett.96(26), 263514 (2010). [CrossRef]
  19. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett.100(3), 031113 (2012). [CrossRef]
  20. D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express20(16), 17359–17366 (2012). [CrossRef] [PubMed]
  21. N. Lalic and J. Linnros, “Characterization of a porous silicon diode with efficient and tunable electroluminescence,” J. Appl. Phys.80(10), 5971–5977 (1996). [CrossRef]
  22. A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett.94(22), 221110 (2009). [CrossRef]
  23. G.-R. Lin, C.-J. Lin, and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett.91(9), 093122 (2007). [CrossRef]
  24. G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kuo, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett.90(14), 143102 (2007). [CrossRef]
  25. K. Nishimura, Y. Nagao, and N. Ikeda, “High external quantum efficiency of electroluminescence from photoanodized porous silicon,” Jpn. J. Appl. Phys.37(Part 2 No. 3B), L303–L305 (1998). [CrossRef]
  26. B. Gelloz and N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode,” J. Appl. Phys.88(7), 4319–4324 (2000). [CrossRef]
  27. A. Anopchenko, A. Marconi, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “Graded-size Si quantum dot ensembles for efficient light-emitting diodes,” Appl. Phys. Lett.99(18), 181108 (2011). [CrossRef]
  28. M. Perálvarez, J. Barreto, J. Carreras, A. Morales, D. Navarro-Urrios, Y. Lebour, C. Domínguez, and B. Garrido, “Si-nanocrystal-based LEDs fabricated by ion implantation and plasma-enhanced chemical vapour deposition,” Nanotechnology20(40), 405201 (2009). [CrossRef] [PubMed]
  29. B.-H. Lai, C.-H. Cheng, and G.-R. Lin, “Multicolor ITO/SiOx/p-Si/Al light emitting diodes with improved emission efficiency by small Si quantum dots,” IEEE J. Quantum Electron.47(5), 698–704 (2011). [CrossRef]
  30. G.-R. Lin, Y.-H. Pai, and C.-T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol.26(11), 1486–1491 (2008). [CrossRef]
  31. Y.-C. Lien, Y.-H. Pai, and G.-R. Lin, “Si nano-dots and nano-pyramids dependent light emission and charge accumulation in ITO/SiOx/p-Si MOS diode,” IEEE J. Quantum Electron.46(1), 121–127 (2010). [CrossRef]
  32. E. Sun, F.-H. Su, Y.-T. Shih, H.-L. Tsai, C.-H. Chen, M.-K. Wu, J.-R. Yang, and M.-J. Chen, “An efficient Si light-emitting diode based on an n-ZnO/SiO2-Si nanocrystals-SiO2/p-Si heterostructure,” Nanotechnology20(44), 445202 (2009). [CrossRef] [PubMed]
  33. K.-Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett.11(5), 1952–1956 (2011). [CrossRef] [PubMed]
  34. D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. B. Wang, G. A. Ozin, and Z. Lu, “Visible colloidal nanocrystal silicon light-emitting diode,” Nano Lett.11(4), 1585–1590 (2011). [CrossRef] [PubMed]
  35. B.-H. Lai, C.-H. Cheng, Y.-H. Pai, and G.-R. Lin, “Plasma power controlled deposition of SiOx with manipulated Si Quantum Dot size for photoluminescent wavelength tailoring,” Opt. Express18(5), 4449–4456 (2010). [CrossRef] [PubMed]
  36. W.-L. Hsu, Y.-H. Pai, F.-S. Meng, C.-W. Liu, and G.-R. Lin, “Nanograin crystalline transformation enhanced UV transparency of annealing refined indium tin oxide film,” Appl. Phys. Lett.94(23), 231906 (2009). [CrossRef]
  37. C.-D. Lin, C.-H. Cheng, Y.-H. Lin, C.-L. Wu, Y.-H. Pai, and G.-R. Lin, “Comparing retention and recombination of electrically injected carriers in Si quantum dots embedded in Si-rich SiNx films,” Appl. Phys. Lett.99(24), 243501 (2011). [CrossRef]
  38. R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character119(781), 173–181 (1928). [CrossRef]
  39. Z. H. Cen, T. P. Chen, L. Ding, Z. Liu, J. I. Wong, M. Yang, W. P. Goh, and S. Fung, “Influence of implantation dose on electroluminescence from Si-implanted silicon nitride thin films,” Appl. Phys., A Mater. Sci. Process.104(1), 239–245 (2011). [CrossRef]
  40. G. Chakraborty, S. Chattopadhyay, C. K. Sarkar, and C. Pramanik, “Tunneling current at the interface of silicon and silicon dioxide partly embedded with silicon nanocrystals in metal oxide semiconductor structures,” J. Appl. Phys.101(2), 024315 (2007). [CrossRef]
  41. L. Pavesi and R. Turan, Silicon Nanocrystals: Fundamentals, Synthesis and Application (WILEY-VCH Verlag GmbH & Co. KGaA, 2010), Chap. 2, pp. 25.
  42. T. Li, F. Gygi, and G. Galli, “Tailored nanoheterojunctions for optimized light emission,” Phys. Rev. Lett.107(20), 206805 (2011). [CrossRef] [PubMed]
  43. G.-R. Lin, C.-J. Lin, and K.-C. Yu, “Time-resolved photoluminescence and capacitance-voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate,” J. Appl. Phys.96(5), 3025–3027 (2004). [CrossRef]
  44. V. A. Belyakov, V. A. Burdov, R. Lockwood, and A. Merdrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Advances in Optical Technologies, review article ID 279502 (2008).
  45. C.-J. Lin, C. K. Lee, E. W. G. Diau, and G.-R. Lin, “Time-resolved photoluminescence analysis of multidose Si-ion-implanted SiO2,” J. Electrochem. Soc.153(2), E25–E32 (2006). [CrossRef]
  46. C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photonics J.4(5), 1762–1775 (2012). [CrossRef]
  47. E. P. O’Reilly and M. Silver, “Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers,” Appl. Phys. Lett.63(24), 3318–3320 (1993). [CrossRef]
  48. L. L. Goddard, S. R. Bank, M. A. Wistey, H. B. Yuen, Z. Rao, and J. S. Harris., “Recombination, gain, band structure, efficiency, and reliability of 1.5-µm GaInNAsSb/GaAs lasers,” J. Appl. Phys.97(8), 083101 (2005). [CrossRef]
  49. A. Irrera, D. Pacifici, M. Miritello, G. Franzo, F. Priolo, F. Iacona, F. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence properties of light emitting devices based on silicon nanocrystals,” Phys. E16(3-4), 395–399 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited