OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 431–442

Spectral broadening effects of spontaneous emission and density of state on plasmonic enhancement in cermet waveguides

Keyong Chen, Xue Feng, Chao Zhang, Kaiyu Cui, and Yidong Huang  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 431-442 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the full integration formula of Purcell factor (PF) deduced from Fermi’s Golden Rule, the plasmonic enhancement in Au(1-α)Si3N4(α) cermet waveguides is evaluated with the joint impact of finite emission linewidth and the broadening of PF spectrum. The calculation results indicate that the PF would be significantly degraded by the two broadening effects though the SPP resonance frequency can be tuned with different volume fractions (α) of Si3N4. It is also found that the critical emission linewidth is approximately linear to the PF spectrum linewidth. Thus in order to achieve strong plasmonic enhancement, both the emission and PF spectrum linewidths should be dramatically reduced.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(310.3915) Thin films : Metallic, opaque, and absorbing coatings

ToC Category:
Optics at Surfaces

Original Manuscript: September 24, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: December 9, 2012
Published: January 4, 2013

Keyong Chen, Xue Feng, Chao Zhang, Kaiyu Cui, and Yidong Huang, "Spectral broadening effects of spontaneous emission and density of state on plasmonic enhancement in cermet waveguides," Opt. Express 21, 431-442 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005). [CrossRef]
  2. M. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. Mishra, and S. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60(16), 11564–11567 (1999). [CrossRef]
  3. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  4. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005). [CrossRef]
  5. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett.5(9), 1768–1773 (2005). [CrossRef] [PubMed]
  6. Y. Y. Gong, J. Lu, S. L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett.94(1), 013106 (2009). [CrossRef]
  7. K. Okamoto, A. Scherer, and Y. Kawakami, “Surface plasmon enhanced light emission from semiconductor materials,” Phys. Status Solidi C5(9), 2822–2824 (2008). [CrossRef]
  8. F. Hatami, V. Lordi, J. S. Harris, H. Kostial, and W. T. Masselink, “Red light-emitting diodes based on InP/GaP quantum dots,” J. Appl. Phys.97(9), 096106 (2005). [CrossRef]
  9. H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC, 1995), Chap. 8.
  10. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev.69(1-2), 37–38 (1946). [CrossRef]
  11. X. Hu, Y. Huang, W. Zhang, and J. Peng, “Dominating radiative recombination in a nanoporous silicon layer with a metal-rich Au(1-α)SiO2(α) cermet waveguide,” Appl. Phys. Lett.89(8), 081112 (2006). [CrossRef]
  12. X. Tang, Y. Wang, W. Ke, X. Feng, Y. Huang, and J. Peng, “Internal quantum efficiency enhancement of silicon nanocrystals using double layer Au-rich cermet films,” Opt. Commun.283(13), 2754–2757 (2010). [CrossRef]
  13. D. Lu, J. Kan, E. E. Fullerton, and Z. Liu, “Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors,” Appl. Phys. Lett.98(24), 243114 (2011). [CrossRef]
  14. X. Feng, F. Liu, and Y. D. Huang, “Calculated plasmonic enhancement of spontaneous emission from silicon nanocrystals with metallic gratings,” Opt. Commun.283(13), 2758–2761 (2010). [CrossRef]
  15. X. Feng, F. Liu, and Y. D. Huang, “Spontaneous emission rate enhancement of silicon nanocrystals by plasmonic bandgap on copper grating,” J. Lightwave Technol.28(9), 1420–1430 (2010). [CrossRef]
  16. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett.90(11), 111107 (2007). [CrossRef]
  17. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005). [CrossRef] [PubMed]
  18. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008). [CrossRef]
  19. C. Hong, H. Kim, S. Park, and C. Lee, “Optical properties of porous silicon coated with ultrathin gold film by RF-magnetron sputtering,” J. Eur. Ceram. Soc.30(2), 459–463 (2010). [CrossRef]
  20. M. van Exter, G. Nienhuis, and J. Woerdman, “Two simple expressions for the spontaneous emission factor β,” Phys. Rev. A54(4), 3553–3558 (1996). [CrossRef] [PubMed]
  21. T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quantum Electron.9(5), 1340–1346 (2003). [CrossRef]
  22. H. Iwase, D. Englund, and J. Vučković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express18(16), 16546–16560 (2010). [CrossRef] [PubMed]
  23. X. Feng, K. Cui, F. Liu, and Y. Huang, “Impact of spectral broadening on plasmonic enhancement with metallic gratings,” Appl. Phys. Lett.101(12), 121102 (2012). [CrossRef]
  24. Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett.90(3), 033113 (2007). [CrossRef]
  25. P. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics (Academic, 1994).
  26. P. Sheng, “Theory for the dielectric function of granular composite media,” Phys. Rev. Lett.45(1), 60–63 (1980). [CrossRef]
  27. U. J. Gibson and R. A. Buhrman, “Optical response of cermet composite films in the microstructural transition region,” Phys. Rev. B27(8), 5046–5051 (1983). [CrossRef]
  28. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt.21(6), 1069–1072 (1982). [CrossRef] [PubMed]
  29. W. Chen, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Fabrication and optical characterizations of smooth silver-silica nanocomposite films,” Laser Phys. Lett.7(9), 677–684 (2010). [CrossRef]
  30. N. C. Miller, B. Hardiman, and G. A. Shirn, “Transport properties, microstructure, and conduction model of cosputtered Au-SiO2 cermet films,” J. Appl. Phys.41(4), 1850–1856 (1970). [CrossRef]
  31. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  32. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978). [CrossRef]
  33. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984). [CrossRef]
  34. W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol.17(11), 2170–2182 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited