OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 488–499

Three-input optical addition and subtraction of quaternary base numbers

Jian Wang, Jeng-Yuan Yang, Hao Huang, and Alan E. Willner  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 488-499 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2828 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an approach to implementing three-input addition and subtraction of quaternary base numbers in the optical domain using multiple non-degenerate four-wave mixing (FWM) processes in a single highly nonlinear fiber (HNLF) and differential quadrature phase-shift keying (DQPSK) signals. By employing 100-Gbit/s three-input return-to-zero DQPSK (RZ-DQPSK) signals (A, B, C), we demonstrate 50-Gbaud/s three-input quaternary hybrid addition and subtraction (A + B-C, A + C-B, B + C-A). Moreover, by adding a conversion stage from C to –C via conjugated degenerate FWM, we also demonstrate 50-Gbaud/s three-input quaternary addition (A + B + C). The power penalties of three-input quaternary addition and subtraction (A + B-C, A + C-B, B + C-A, A + B + C) are measured to be less than 6 dB at a bit-error rate (BER) of 10−9. In addition, no significant degradations are observed for RZ-DQPSK signals (A, B, C or –C) after the operations of quaternary addition and subtraction.

© 2013 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4560) Fourier optics and signal processing : Data processing by optical means
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(200.3760) Optics in computing : Logic-based optical processing

ToC Category:
Subsystems for Optical Networks

Original Manuscript: October 22, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 19, 2012
Published: January 7, 2013

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Jian Wang, Jeng-Yuan Yang, Hao Huang, and Alan E. Willner, "Three-input optical addition and subtraction of quaternary base numbers," Opt. Express 21, 488-499 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286(5444), 1523–1528 (1999). [CrossRef] [PubMed]
  2. C. Porzi, M. Scaffardi, L. Potì, and A. Bogoni, “Optical digital signal processing in a single SOA without assist probe light,” IEEE J. Sel. Top. Quantum Electron.16(5), 1469–1475 (2010). [CrossRef]
  3. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett.14(10), 1436–1438 (2002). [CrossRef]
  4. I. Kang, C. Dorrer, and J. Leuthold, “All-optical XOR operation of 40 Gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier,” Electron. Lett.40(8), 496–498 (2004). [CrossRef]
  5. N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWMin semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron.12(4), 702–707 (2006). [CrossRef]
  6. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L. S. Yan, and A. E. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(6), 1232–1234 (2005). [CrossRef]
  7. J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZDPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun.282(13), 2615–2619 (2009). [CrossRef]
  8. J. Wang, Q. Z. Sun, and J. Q. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express17(15), 12555–12563 (2009). [CrossRef] [PubMed]
  9. J. F. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett.22(16), 1199–1201 (2010). [CrossRef]
  10. S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express14(22), 10255–10260 (2006). [CrossRef] [PubMed]
  11. J. Wang, J. Q. Sun, and Q. Z. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express15(4), 1690–1699 (2007). [CrossRef] [PubMed]
  12. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Dual-channel-output all-optical logic AND gate at 20 Gbit/s based on cascaded second-order nonlinearity in PPLN waveguide,” Electron. Lett.43(17), 940–941 (2007). [CrossRef]
  13. J. Wang, J. Q. Sun, X. L. Zhang, D. X. Huang, and M. M. Fejer, “Ultrafast all-optical three-input boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett.33(13), 1419–1421 (2008). [CrossRef] [PubMed]
  14. J. Wang, Q. Z. Sun, and J. Q. Sun, “Ultrafast all-optical logic AND gate for CSRZ signals using periodically poled lithium niobate,” J. Opt. Soc. Am. B26(5), 951–958 (2009). [CrossRef]
  15. A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett.35(23), 3955–3957 (2010). [CrossRef] [PubMed]
  16. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D.-Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett.36(5), 710–712 (2011). [CrossRef] [PubMed]
  17. F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” Opt. Express19(21), 20364–20371 (2011). [CrossRef] [PubMed]
  18. Y. Q. Xie, Y. Gao, S. M. Gao, X. D. Mou, and S. L. He, “All-optical multiple-channel logic XOR gate for NRZ-DPSK signals based on nondegenerate four-wave mixing in a silicon waveguide,” Opt. Lett.36(21), 4260–4262 (2011). [CrossRef] [PubMed]
  19. C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, and B. J. Eggleton, “Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide,” Opt. Express19(21), 20681–20690 (2011). [CrossRef] [PubMed]
  20. C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012). [CrossRef]
  21. Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, and N. Park, “Demonstration of 10 Gbps, all-optical encryption and decryption system utilizing SOA XOR logic gates,” Opt. Quantum Electron.40(5-6), 425–430 (2008). [CrossRef]
  22. J. Wang, J.-Y. Yang, X. X. Wu, and A. E. Willner, “Optical hexadecimal coding/decoding using 16-QAM signal and FWM in HNLFs,” J. Lightwave Technol.30(17), 2890–2900 (2012). [CrossRef]
  23. X. Zhou and J. Yu, “Multi-level, multi-dimensional coding for high-speed and high spectral-efficiency optical transmission,” J. Lightwave Technol.27(16), 3641–3653 (2009). [CrossRef]
  24. P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, “100-Gb/s DQPSK transmission: from laboratory experiments to field trials,” J. Lightwave Technol.26(20), 3388–3402 (2008). [CrossRef]
  25. P. Guan, T. Hirano, K. Harako, Y. Tomiyama, T. Hirooka, and M. Nakazawa, “2.56 Tbit/s/ch polarization-multiplexed DQPSK transmission over 300 km using time-domain optical Fourier transformation,” Opt. Express19(26), B567–B573 (2011). [CrossRef] [PubMed]
  26. J. Wang, S. R. Nuccio, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical data exchange of 100-Gbit/s DQPSK signals,” Opt. Express18(23), 23740–23745 (2010). [CrossRef] [PubMed]
  27. J. Wang, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Multi-channel 100-Gbit/s DQPSK data exchange using bidirectional degenerate four-wave mixing,” Opt. Express19(4), 3332–3338 (2011). [CrossRef] [PubMed]
  28. J. Wang, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF,” Opt. Express19(19), 18246–18252 (2011). [CrossRef] [PubMed]
  29. A. Malacarne, E. Lazzeri, V. Vercesi, M. Scaffardi, and A. Bogoni, “Colorless all-optical sum and subtraction of phases for phase-shift keying signals based on a periodically poled lithium niobate waveguide,” Opt. Lett.37(18), 3831–3833 (2012). [PubMed]
  30. E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photon. Technol. Lett.24(24), 2258–2261 (2012), doi:. [CrossRef]
  31. J. Wang, S. R. Nuccio, J.-Y. Yang, X. X. Wu, A. Bogoni, and A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett.37(7), 1139–1141 (2012). [CrossRef] [PubMed]
  32. J. Wang, J. Yang, X. Wu, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “40-Gbaud/s (120-Gbit/s) octal and 10-Gbaud/s (40-Gbit/s) hexadecimal simultaneous addition and subtraction using 8PSK/16PSK and highly nonlinear fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC3.
  33. J. Wang, J. Yang, H. Huang, and A. Willner, “All-optical 50-Gbaud/s three-input hybrid addition/subtraction of quaternary base numbers using multiple non-degenerate FWM processes and 100-Gbit/s DQPSK signals,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Tu.1.A.4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited