OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 49–59

Label-free, single-object sensing with a microring resonator: FDTD simulation

Dan T. Nguyen and Robert A. Norwood  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 49-59 (2013)
http://dx.doi.org/10.1364/OE.21.000049


View Full Text Article

Enhanced HTML    Acrobat PDF (1707 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Label-free, single-object sensing with a microring resonator is investigated numerically using the finite difference time-domain (FDTD) method. A pulse with ultra-wide bandwidth that spans over several resonant modes of the ring and of the sensing object is used for simulation, enabling a single-shot simulation of the microring sensing. The FDTD simulation not only can describe the circulation of the light in a whispering-gallery-mode (WGM) microring and multiple interactions between the light and the sensing object, but also other important factors of the sensing system, such as scattering and radiation losses. The FDTD results show that the simulation can yield a resonant shift of the WGM cavity modes. Furthermore, it can also extract eigenmodes of the sensing object, and therefore information from deep inside the object. The simulation method is not only suitable for a single object (single molecule, nano-, micro-scale particle) but can be extended to the problem of multiple objects as well.

© 2013 OSA

OCIS Codes
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(080.1753) Geometric optics : Computation methods
(140.3948) Lasers and laser optics : Microcavity devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: September 21, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: December 11, 2012
Published: January 2, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Dan T. Nguyen and Robert A. Norwood, "Label-free, single-object sensing with a microring resonator: FDTD simulation," Opt. Express 21, 49-59 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-49


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007). [CrossRef] [PubMed]
  2. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002). [CrossRef]
  3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008). [CrossRef] [PubMed]
  4. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonantor,” Nat. Photonics4(1), 46–49 (2010). [CrossRef]
  5. H. T. Beir, G. L. Cote, and K. E. Meissner, “Whispering-gallery-mode based biosensing using quantum dot-embedded microspheres,” in Colloidal Quantum Dots for Biomedical Applications V, edited by M. Osinski. Proc. SPIE 7575, 5750H (2010).
  6. F. Vollmer, ““Microcavity biosensing,” in Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XI. Eds A. Heisterkamp, J. Neev, and S,” Nolte. Proc. SPIE7925, 792502, 792502-4 (2011). [CrossRef]
  7. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonators channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  8. R.J. Hawkins, N. K. Maden, J.S. Kallman, M. D. Feit, C. C. Shang, B. W. Shore, and J. F. DeFord, “Full-wave simulation of the thumbtack laser,” in Integrated Photon. Res. Tech. Dig., 1993, Palm Springs, CA, 10, 116 - 119, Mar. 1993.
  9. B. J. Li and P. L. Liu, “Numerical analysis of whispering gallery modes by the finite –different time-domain method,” IEEE J. Quantum Electron.32(9), 1583–1587 (1996). [CrossRef]
  10. S. C. Hagness, D. Rafizadesh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol.15(11), 2154–2165 (1997). [CrossRef]
  11. S.-T. Chu and S. K. Chaudhuri, “A finite-difference time-domain method for the design and analysis of guided-wave optical structures,” J. Lightwave Technol.7(12), 2033–2038 (1989). [CrossRef]
  12. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]
  13. Dennis M. Sullivan, Electromagnetic Simulation using FDTD Method (Wiley-IEEE Press, July 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3946 KB)      QuickTime
» Media 2: AVI (14900 KB)      QuickTime
» Media 3: AVI (3946 KB)      QuickTime
» Media 4: AVI (14900 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited