OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 556–564

High performance InP ring resonator for new generation monolithically integrated optical gyroscopes

Caterina Ciminelli, Francesco Dell'Olio, Mario N. Armenise, Francisco M. Soares, and Wolfgang Passenberg  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 556-564 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An InP ring resonator with an experimentally demonstrated quality factor (Q) of the order of 106 is reported for the first time. This Q value, typical for low loss technologies such as silica-on-silicon, is a record for the InP technology and improves the state-of-the-art of about one order of magnitude. The cavity has been designed aiming at the Q-factor maximization while keeping the resonance depth of about 8 dB. The device was fabricated using metal-organic vapour-phase-epitaxy, photolithography and reactive ion etching. It has been optically characterized and all its performance parameters have been estimated. InP waveguide loss low as 0.45 dB/cm has been measured, leading to a potential shot noise limited resolution of 10 °/h for a new angular velocity sensor.

© 2013 OSA

OCIS Codes
(060.2800) Fiber optics and optical communications : Gyroscopes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(140.3370) Lasers and laser optics : Laser gyroscopes
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: October 16, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 21, 2012
Published: January 7, 2013

Caterina Ciminelli, Francesco Dell'Olio, Mario N. Armenise, Francisco M. Soares, and Wolfgang Passenberg, "High performance InP ring resonator for new generation monolithically integrated optical gyroscopes," Opt. Express 21, 556-564 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer, 2010), chaps. 3–4.
  2. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photon.2(3), 370–404 (2010). [CrossRef]
  3. O. Kenji, “Semiconductor ring laser gyro,” Japanese patent # JP 60,148,185, filed 1984, issued 1985.
  4. M. Armenise and P. J. R. Laybourn, “Design and Simulation of a Ring Laser for Miniaturised Gyroscopes,” Proc. SPIE3464, 81–90 (1998). [CrossRef]
  5. M. N. Armenise, V. M. N. Passaro, F. De Leonardis, and M. Armenise, “Modeling and Design of a Novel Miniaturized Integrated Optical Sensor for Gyroscope Systems,” J. Lightwave Technol.19(10), 1476–1494 (2001). [CrossRef]
  6. M. Osińki, H. Cao, C. Liu, and P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth288(1), 144–147 (2006). [CrossRef]
  7. W. Lawrence, “Thin film laser gyro,” US Patent 4326803, filed 1979, issued 1982.
  8. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol.18(1), 66–72 (2000). [CrossRef]
  9. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express19(5), 4632–4643 (2011). [CrossRef] [PubMed]
  10. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Numerical and experimental investigation of an optical high-Q spiral resonator gyroscope,” Proc. 14th Transparent Optical Networks (ICTON), Coventry, UK, Jul 2 - 5, 2012. DOI: 10.1109/ICTON.2012.6254463. [CrossRef]
  11. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J.4(5), 1844–1854 (2012). [CrossRef]
  12. G. Li, K. A. Winick, B. R. Youmans, and E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation’s 60th Annual Meeting, Dayton, Ohio, USA, June 7–9, 2004.
  13. L. Guo, B. Shi, C. Chen, and M. Zhao, “A large-size SiO2 waveguide resonator used in integration optical gyroscope,” Optik (Stuttg.)123(4), 302–305 (2012). [CrossRef]
  14. M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev.6(1), 1–13 (2012). [CrossRef]
  15. V. I. Tolstikhin, A. Densmore, Y. Logvin, K. Pimenov, F. Wu, and S. Laframboise, “44-channel optical power monitor based on an echelle grating demultiplexer and a waveguide photodetector array monolithically integrated on an InP substrate,” Proceedings of the Optical Fiber Communication Conference OFC 2003, Atlanta, Georgia, USA, 2003, paper PD37.
  16. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett.42(13), 771–773 (2006). [CrossRef]
  17. S. Nicholes, M. L. Mašanovic, B. Jevremovic, E. Lively, L. Coldren, and D. J. Blumenthal, “The World’s First InP 8x8 Monolithic Tunable Optical Router (MOTOR) Operating at 40 Gbps Line Rate per Port,” Optical Fiber Communication ConferenceOFC 2009, San Diego, CA, USA, 2009, paper PDPB1.
  18. F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz Device for Optical Arbitrary Waveform Generation,” IEEE Photon. J.3(6), 975–985 (2011). [CrossRef]
  19. C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, and M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Center, Moffett Field, CA, USA, March 1–6, 2009.
  20. F. Dell’Olio, C. Ciminelli, V. M. N. Passaro, and M. N. Armenise, “Optical angular velocity sensors and related read-out systems for new generation gyroscopes,” presented at 1st Networking/Partnering Day 2010, Noordwijk, Nederland, January 28, 2010.
  21. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, “Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity,” Opt. Lett.6(11), 569–571 (1981). [CrossRef] [PubMed]
  22. C. Ciminelli, F. Dell'Olio, C. E. Campanella, V. M. N. Passaro, and M. N. Armenise, “Integrated Optical Ring Resonators: Modelling and Technologies,” in Progress in Optical Fibers, P. S. Emersone, Ed. (Nova Science Publisher, 2010).
  23. S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators,” IEEE Photon. Technol. Lett.16(10), 2266–2268 (2004). [CrossRef]
  24. F. Dell’Olio, C. Ciminelli, M. N. Armenise, F. M. Soares, and W. Rehbein, “Design, fabrication, and preliminary test results of a new InGaAsP/InP high-Q ring resonator for gyro applications,” 24th International Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, USA, August 27–30, 2012.
  25. C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. European Opt. Soc. Rapid Publications4, 09015 (2009). [CrossRef]
  26. R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B36(3), 143–147 (1985). [CrossRef]
  27. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited