OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 565–580

Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization

Yong Liang, Chao Peng, Kenji Ishizaki, Seita Iwahashi, Kyosuke Sakai, Yoshinori Tanaka, Kyoko Kitamura, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 565-580 (2013)
http://dx.doi.org/10.1364/OE.21.000565


View Full Text Article

Enhanced HTML    Acrobat PDF (2471 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional coupled-wave theory is extended to model triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization. A generalized coupled-wave equation is derived to describe the sixfold symmetry of the eigenmodes in a triangular lattice. The extended theory includes the effects of both surface radiation and in-plane losses in a finite-size laser structure. Modal properties of interest including the band structure, radiation constant, threshold gain, field intensity profile, and far-field pattern (FFP) are calculated. The calculated band structure and FFP, as well as the predicted lasing mode, agree well with experimental observations. The effect of air-hole size on mode selection is also studied and confirmed by experiment.

© 2013 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(160.5298) Materials : Photonic crystals

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 15, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: December 19, 2012
Published: January 7, 2013

Citation
Yong Liang, Chao Peng, Kenji Ishizaki, Seita Iwahashi, Kyosuke Sakai, Yoshinori Tanaka, Kyoko Kitamura, and Susumu Noda, "Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization," Opt. Express 21, 565-580 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-565


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett.75, 316–318 (1999). [CrossRef]
  2. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science293, 1123–1125 (2001). [CrossRef] [PubMed]
  3. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B65, 195306 (2002). [CrossRef]
  4. I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron.39, 689–700 (2003). [CrossRef]
  5. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express12, 1562–1568 (2004). [CrossRef] [PubMed]
  6. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature (London)441, 946 (2006). [CrossRef]
  7. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science319, 445–447 (2008). [CrossRef]
  8. M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett.88, 191105 (2006). [CrossRef]
  9. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature (London)457, 174–178 (2009). [CrossRef]
  10. L. Mahler and A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser Photonics Rev.5, 647–658 (2011).
  11. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics4, 447–450 (2010). [CrossRef]
  12. S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express19, 11963–11968 (2011). [CrossRef] [PubMed]
  13. S. Iwahashi, K. Sakai, Y. Kurosaka, and S. Noda, “Centered-rectangular lattice photonic-crystal surface-emitting lasers,” Phys. Rev. B85, 035304 (2012). [CrossRef]
  14. H. Y. Ryu, M. Notomi, and Y. H. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B68, 045209 (2003). [CrossRef]
  15. M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express13, 2869–2880 (2005). [CrossRef] [PubMed]
  16. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys.43, 2327–2335 (1972). [CrossRef]
  17. M. Toda, “Proposed cross grating single-mode DFB laser,” IEEE J. Quantum Electron.28, 1653–1662, (1992). [CrossRef]
  18. K. Sakai, E. Miyai, and S. Noda, “Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode,” Appl. Phys. Lett.89, 021101 (2006). [CrossRef]
  19. K. Sakai, J. Yue, and S. Noda, “Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization,” Opt. Express16, 6033–6040 (2008). [CrossRef] [PubMed]
  20. K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron.46, 788–795 (2010). [CrossRef]
  21. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic-crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B84, 195119 (2011). [CrossRef]
  22. C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Coupled-wave analysis for photonic-crystal surface-emitting lasers on air-holes with arbitrary sidewalls,” Opt. Express19, 24672–24686 (2011). [CrossRef] [PubMed]
  23. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic-crystal lasers with transverse electric polarization: Finite-size effects,” Opt. Express20, 15945–15961 (2012). [CrossRef] [PubMed]
  24. C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of centered-rectangular lattice photonic crystal with transverse-electric-like mode,” Phys. Rev. B86, 035108 (2012). [CrossRef]
  25. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B52, 7982 (1995). [CrossRef]
  26. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun.23, 1335–1340 (2005). [CrossRef]
  27. M. Koba and P. Szczepanski, “The threshold mode structure analysis of the two-dimensional photonic crystal lasers,” Prog. Electromagn. Res.125, 365–389 (2012). [CrossRef]
  28. K. Forberich, M. Diem, J. Crewett, U. Lemmer, A. Gombert, and K. Busch, “Lasing action in two-dimensional organic photonic crystal lasers with hexagonal symmetry,” Appl. Phys. B82, 539–541 (2006). [CrossRef]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited