OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 594–604

Investigating the influences of the precise manufactured shape of dipole nanoantennas on their optical properties

C. Moosmann, G. S. Sigurdsson, M. D. Wissert, K. Dopf, U. Lemmer, and H.-J. Eisler  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 594-604 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1997 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fabrication of small nanoantennas with high aspect ratios via electron beam lithography is at the current technical limit of nanofabrication and hence significant deviations from the intended shape of small nanobars occur. Via numerical simulations, we investigate the influence of geometrical variations of gap nanoantennas, having dimensions on the order of only a few tens of nanometers. We show that those deviations have a significant influence on the performance of such nanoantennas. In particular, their resonance wavelength as well as the magnitude of absorption and scattering cross section and the electric field distribution in the near field is strongly altered. Our findings are thus of importance for applications based on near field as well as those based on far field interactions with nanoantennas and have to be carefully and individually considered in both cases.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: September 20, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: December 19, 2012
Published: January 7, 2013

C. Moosmann, G. S. Sigurdsson, M. D. Wissert, K. Dopf, U. Lemmer, and H.-J. Eisler, "Investigating the influences of the precise manufactured shape of dipole nanoantennas on their optical properties," Opt. Express 21, 594-604 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006). [CrossRef] [PubMed]
  2. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98, 011101 (2005). [CrossRef]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010). [CrossRef] [PubMed]
  4. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.444, 101–202 (2007). [CrossRef]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008). [CrossRef] [PubMed]
  6. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys.119, 3926–3934 (2003). [CrossRef]
  7. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  8. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005). [CrossRef] [PubMed]
  9. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009). [CrossRef]
  10. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998). [CrossRef]
  11. T. Taminiau, F. Stefani, F. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008). [CrossRef]
  12. J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a nanoantenna and a single quantum emitter,” Phys. Rev. Lett.105, 117701 (2010). [CrossRef] [PubMed]
  13. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007). [CrossRef] [PubMed]
  14. E. Seo, B. K. Choi, and O. Kim, “Determination of proximity effect parameters and the shape bias parameter in electron beam lithography,” Microelectron. Eng.53, 305–308 (2000). [CrossRef]
  15. M. Hauptmann, K. H. Choi, P. Jaschinsky, C. Hohle, J. Kretz, and L. M. Eng, “Determination of proximity effect parameters by means of CD-linearity in sub 100nm electron beam lithography,” Microelectron. Eng.86, 539–543 (2009). [CrossRef]
  16. A. V. Kildishev, J. D. Borneman, K.-P. Chen, and V. P. Drachev, “Numerical modeling of plasmonic nanoantennas with realistic 3D roughness and distortion,” Sensors11, 7178–7187 (2011). [CrossRef] [PubMed]
  17. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011). [CrossRef] [PubMed]
  18. A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011). [CrossRef]
  19. “ http://www.lumerical.com ,” (2012).
  20. “ http://www.comsol.com ,” (2012).
  21. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16, 9144–9154 (2008). [CrossRef] [PubMed]
  22. Raith GmbH, personal communication (2011).
  23. M. D. Wissert, A. W. Schell, K. S. Ilin, M. Siegel, and H.-J. Eisler, “Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties,” Nanotechnology20, 425203 (2009). [CrossRef] [PubMed]
  24. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method: Its Basis and Fundamentals (Butterworth Heinemann, 2005).
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc, 2005).
  26. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  27. M. Fleischmann, P. J. Hendra, and A. J. McQuillian, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26, 163–166 (1974). [CrossRef]
  28. K. T. Shimizu, W. K. Woo, B. R. Fisher, H.-J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited