OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 60–69

Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler

Xiaohui Lin, Amir Hosseini, Xinyuan Dou, Harish Subbaraman, and Ray T. Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 60-69 (2013)
http://dx.doi.org/10.1364/OE.21.000060


View Full Text Article

Enhanced HTML    Acrobat PDF (2166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate intra- and inter-board level optical interconnects using polymer waveguides and waveguide couplers consisting of both 45 degree total internal reflection (TIR) mirrors and inkjet-printed micro-lenses. Surface normal couplers consisting of 50 µm × 50 µm waveguides with embedded 45 degree mirrors are fabricated using a nickel mold imprint. Micro-lenses, 70 µm in diameter, are inkjet-printed on top of the mirrors. We characterize the optical transmission between waveguides located on different boards in terms of insertion loss, mirror coupling loss, and free space propagation loss as a function of interconnection distance in free space. Each mirror contributes 1.88 dB loss to the system, corresponding to 65% efficiency. The printed micro-lenses improve the transmission by 2-4 dB (per coupler). Data transmission at 10 Gbps reveals that inter-board interconnects has a bit error rate (BER) of 1.1 × 10−10 and 6.2 × 10−13 without and with the micro-lenses, respectively.

© 2013 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(220.3630) Optical design and fabrication : Lenses
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: September 26, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 15, 2012
Published: January 2, 2013

Citation
Xiaohui Lin, Amir Hosseini, Xinyuan Dou, Harish Subbaraman, and Ray T. Chen, "Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler," Opt. Express 21, 60-69 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-60


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Kodi and A. Louri, “Energy-efficient and bandwidth-reconfigurable photonic networks for high-performance computing (HPC) systems,” IEEE J Sel Top Quant17(2), 384–395 (2011). [CrossRef]
  2. H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightwave Technol.22(9), 2021–2033 (2004). [CrossRef]
  3. G. Q. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “On-chip copper-based vs. optical interconnects: Delay uncertainty, latency, power, and bandwidth density comparative predictions,” Proceedings of the IEEE 2006 International Interconnect Technology Conference, 39–41, 232 (2006).
  4. L. Brusberg, M. Neitz, and H. Schroder, “Single-mode glass waveguide technology for optical inter-chip communication on board-level,” Proc. SPIE8267, 82670M, 82670M-10 (2012). [CrossRef]
  5. J. Xue, A. Garg, B. Ciftcioglu, J. Y. Hu, S. Wang, L. Savidis, M. Jain, R. Berman, P. Liu, M. Huang, H. Wu, E. Friedman, G. Wicks, and D. Moore, “An intra-chip free-space optical interconnect,” Conf Proc Int Symp C, 94–105 (2010).
  6. R. Barbieri, P. Benabes, T. Bierhoff, J. J. Caswell, A. Gauthier, J. Jahns, M. Jarczynski, P. Lukowicz, J. Oksman, G. A. Russell, J. Schrage, J. F. Snowdon, O. Stübbe, G. Troster, and M. Wirz, “Design and construction of the high-speed optoelectronic memory system demonstrator,” Appl. Opt.47(19), 3500–3512 (2008). [CrossRef] [PubMed]
  7. R. T. Chen, L. Lin, C. Choi, Y. J. J. Liu, B. Bihari, L. Wu, S. N. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE88(6), 780–793 (2000). [CrossRef]
  8. C. C. Choi, L. Lin, Y. J. Liu, J. H. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol.22(9), 2168–2176 (2004). [CrossRef]
  9. H. P. Kuo, P. Rosenberg, R. Walmsley, S. Mathai, L. Kiyama, J. Straznicky, M. Mclaren, M. Tan, and S. Y. Wang, “Free-space optical links for board-to-board interconnects,” Appl Phys A-Mater95(4), 955–965 (2009). [CrossRef]
  10. K. Nakama, Y. Matsuzawa, Y. Tokiwa, and O. Mikami, “Board-to-board optical plug-in interconnection using optical waveguide plug and micro hole array,” IEEE Photon. Technol. Lett.23(24), 1881–1883 (2011). [CrossRef]
  11. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31(4), 759–767 (2008). [CrossRef]
  12. J. Van Erps, N. Hendrickx, C. Debaes, P. Van Daele, and H. Thienpont, “Discrete out-of-plane coupling components for printed circuit board-level optical interconnections,” IEEE Photon. Technol. Lett.19(21), 1753–1755 (2007). [CrossRef]
  13. J. J. Yang, A. S. Flores, and M. R. Wang, “Array waveguide evanescent ribbon coupler for card-to-backplane optical interconnects,” Opt. Lett.32(1), 14–16 (2007). [CrossRef] [PubMed]
  14. A. Flores, S. Y. Song, J. J. Yang, Z. Q. Liu, and M. R. Wang, “High-speed optical interconnect coupler based on soft lithography ribbons,” J. Lightwave Technol.26(13), 1956–1963 (2008). [CrossRef]
  15. P. Pepeljugoski and D. Kuchta, “Jitter performance of short length optical interconnects for rack-to-rack applications,” Ofc: 2009 Conference on Optical Fiber Communication, Vols 1–5, 1797–1799 (2009).
  16. J. Sakai, A. Noda, M. Yamagishi, T. Ohtsuka, K. Sunaga, H. Sugita, H. Takahashi, M. Oda, H. Ono, K. Yashiki, and H. Kouta, “20Gbps/ch optical interconnection between SERDES devices over distances from Chip-to-chip to rack-to-rack,” 2008 34th European Conference on Optical Communication (ECOC) (2008).
  17. J. W. Goodman, F. J. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnections for Vlsi systems,” Proc. IEEE72(7), 850–866 (1984). [CrossRef]
  18. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J Sel Top Quant6(6), 1312–1317 (2000). [CrossRef]
  19. Y. Li, T. Wang, and R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt.35(8), 1282–1295 (1996). [CrossRef] [PubMed]
  20. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, and W. M. Robertson, “4 x 4 vertical-cavity surface-emitting laser (VCSEL) and metal-semiconductor-metal (MSM) optical backplane demonstrator system,” Appl. Opt.35(32), 6365–6368 (1996). [CrossRef] [PubMed]
  21. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, and L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt.37(14), 2811–2821 (1998). [CrossRef] [PubMed]
  22. E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng.35(1-4), 385–388 (1997). [CrossRef]
  23. J. Chou, K. Yu, D. Horsley, R. Walmsley, M. Tan, S. Y. Wang, and M. Wu, “Characterization of a MEMS based optical system for free-space board-to-board optical interconnects,” 2010 Conference on Optical Fiber Communication Ofc Collocated National Fiber Optic Engineers Conference Ofc-Nfoec (2010).
  24. J. Chou, K. Yu, D. Horsley, B. Yoxall, S. Mathai, M. R. T. Tan, S. Y. Wang, and M. C. Wu, “Robust free space board-to-board optical interconnect with closed loop MEMS tracking,” Appl Phys A-Mater95(4), 973–982 (2009). [CrossRef]
  25. T. Sakano, T. Matsumoto, and K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: Cosine-III,” Appl. Opt.34(11), 1815–1822 (1995). [CrossRef] [PubMed]
  26. F. Wu, L. Vj, M. S. Islam, D. A. Horsley, R. G. Walmsley, S. Mathai, D. Houng, M. R. T. Tan, and S.-Y. Wang, “Integrated receiver architectures for board-to-board free-space optical interconnects,” Appl Phys A-Mater95(4), 1079–1088 (2009). [CrossRef]
  27. C. J. Henderson, B. Robertson, D. G. Leyva, T. D. Wilkinson, D. C. O'Brien, and G. Faulkner, “Control of a free-space adaptive optical interconnect using a liquid-crystal spatial light modulator for beam steering,” Opt. Eng.44(7), 075401 (2005). [CrossRef]
  28. J. H. Choi, L. Wang, H. Bi, and R. T. Chen, “Effects of thermal-via structures on thin-film VCSELs for fully embedded board-level optical interconnection system,” IEEE J Sel Top Quant12(5), 1060–1065 (2006). [CrossRef]
  29. Y. J. Liu, L. Lin, C. Choi, B. Bihari, and R. T. Chen, “Optoelectronic integration of polymer waveguide array and metal-semiconductor-metal photodetector through micromirror couplers,” IEEE Photon. Technol. Lett.13(4), 355–357 (2001). [CrossRef]
  30. L. Schares, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C. K. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan, and D. W. Dolfi, “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J Sel Top Quant12(5), 1032–1044 (2006). [CrossRef]
  31. L. Wang, X. L. Wang, W. Jiang, J. H. Choi, H. Bi, and R. Chen, “45 degrees polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett.87, ••• (2005).
  32. C. T. Chen, H. L. Hsiao, C. C. Chang, P. K. Shen, G. F. Lu, Y. C. Lee, S. F. Chang, Y. S. Lin, and M. L. Wu, “4 channels x 10-Gbps optoelectronic transceiver based on silicon optical bench technology,” Proc. SPIE8267, ••• (2012).
  33. B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, and P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” Proc. SPIE8267, 82670T, 82670T-11 (2012). [CrossRef]
  34. G. M. Jiang, S. Baig, and M. R. Wang, “Soft lithography fabricated polymer waveguides with 45 degrees inclined mirrors for card-to-backplane optical interconnects,” Proc. SPIE8267, ••• (2012).
  35. J. Inoue, T. Ogura, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Fabrication of embedded 45-degree micromirror using liquid-immersion exposure for single-mode optical waveguides,” J. Lightwave Technol.30(11), 1563–1568 (2012). [CrossRef]
  36. C. C. Chang, P. K. Shen, C. T. Chen, H. L. Hsiao, Y. C. Chang, Y. C. Lee, and M. L. Wu, “Transmitting part of optical interconnect module with three-dimensional optical path,” Proc. SPIE8267, ••• (2012).
  37. A. L. Glebov, M. G. Lee, and K. Yokouchi, “Integration technologies for pluggable backplane optical interconnect systems,” Opt. Eng.46(1), 015403 (2007). [CrossRef]
  38. B. Ciftcioglu, G. Jing, R. Berman, M. Jain, D. Moore, G. Wicks, M. Huang, E. G. Friedman, and W. Hui, “Recent progress on 3-D integrated intra-chip free-space optical interconnect,” in Optical Interconnects Conference, 2012 IEEE, 2012), 56–57.
  39. B. Ciftcioglu, R. Berman, S. Wang, J. Y. Hu, I. Savidis, M. Jain, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “3-D integrated heterogeneous intra-chip free-space optical interconnect,” Opt. Express20(4), 4331–4345 (2012). [CrossRef] [PubMed]
  40. X. L. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lightwave Technol.26(2), 243–250 (2008). [CrossRef]
  41. X. Y. Dou, X. L. Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express18(1), 378–385 (2010). [CrossRef] [PubMed]
  42. X. Lin, A. Hosseini, A. X. Wang, and R. T. Chen, “Reduced surface roughness with improved imprinting technique for polymer optical components,” in Photonics Conference (IPC),2012IEEE, 2012), 280–281.
  43. C. H. Tien, C. H. Hung, and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications,” J Disp Technol5(5), 147–151 (2009). [CrossRef]
  44. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express1(2), 259–269 (2011). [CrossRef]
  45. V. Fakhfouri, N. Cantale, G. Mermoud, J. Y. Kim, D. Boiko, E. Charbon, A. Martinoli, and J. Brugger, “Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses,” Mems 2008: 21st IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, 407–410 (2008).
  46. B. Xu, W. Yu, M. Yao, M. R. Pepper, and J. H. Freeland-Graves, “Three-dimensional surface imaging system for assessing human obesity,” Opt. Eng.48(10), a156427 (2009). [PubMed]
  47. I. A. Grimaldi, A. D. Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, “Microlens array manufactured by inkjet printing: study of the effects of the solvent and the polymer concentration on the microstructure shape,” Optical Measurement Systems for Industrial Inspection Vii 8082(2011).
  48. A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng.88(8), 2174–2179 (2011). [CrossRef]
  49. K. H. Jeong and L. P. Lee, “A new method of increasing numerical aperture of microlens for biophotonic MEMS,” Eng Med Biol Soc Ann, 380–383 (2002).
  50. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express16(12), 8395–8405 (2008). [CrossRef] [PubMed]
  51. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45(5), 280–U260 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited