OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 640–646

A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission

Shihao Huang, Weifang Lu, Cheng Li, Wei Huang, Hongkai Lai, and Songyan Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 640-646 (2013)
http://dx.doi.org/10.1364/OE.21.000640


View Full Text Article

Enhanced HTML    Acrobat PDF (1067 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to introduce a large biaxial tensile strain in an ultra-thin germanium-on-insulator (GOI) using selective oxidation of SiGe epilayer on silicon-on-insulator (SOI) substrate. A circular patterned Si0.81Ge0.19 mesa on SOI substrate with the sidewall protected by Si3N4 or SiO2 is selectively oxidized to generate local 12 nm GOI with high crystal quality, which shows enhanced photoluminescence due to large tensile strain. Direct band photoluminescence peak significantly shifts to longer wavelength as compared to that from bulk Ge due to a combination of strain-induced band gap reduction and quantum confinement effect.

© 2013 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(160.4670) Materials : Optical materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

History
Original Manuscript: September 5, 2012
Revised Manuscript: November 2, 2012
Manuscript Accepted: November 28, 2012
Published: January 7, 2013

Citation
Shihao Huang, Weifang Lu, Cheng Li, Wei Huang, Hongkai Lai, and Songyan Chen, "A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission," Opt. Express 21, 640-646 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-640


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  2. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express15(18), 11272–11277 (2007). [CrossRef] [PubMed]
  3. C. G. Van de Walle; “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter39(3), 1871–1883 (1989). [CrossRef] [PubMed]
  4. C. Li, Y. Chen, Z. Zhou, H. Lai, and S. Chen, “Enhanced photoluminescence of strained Ge with a δ-doping SiGe layer on silicon and silicon-on-insulator,” Appl. Phys. Lett.95(25), 251102 (2009). [CrossRef]
  5. J. Liu, X. Sun, P. Becla, L. C. Kimerling, and J. Michel, “Towards a Ge-based laser for CMOS applications,” in Proceedings of 5th IEEE International. Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, Italy, 2008), pp. 16–18.
  6. S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express17(12), 10019–10024 (2009). [CrossRef] [PubMed]
  7. D. Nam, D. Sukhdeo, A. Roy, K. Balram, S. L. Cheng, K. C. Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, and K. Saraswat, “Strained germanium thin film membrane on silicon substrate for optoelectronics,” Opt. Express19(27), 25866–25872 (2011). [CrossRef] [PubMed]
  8. M. de Kersauson, M. E. Kurdi, S. David, X. Checoury, G. Fishman, S. Sauvage, R. Jakomin, G. Beaudoin, I. Sagnes, and P. Boucaud, “Optical gain in single tensile-strained germanium photonic wire,” Opt. Express19(19), 17925–17934 (2011). [CrossRef] [PubMed]
  9. Y. Huo, H. Lin, Y. Rong, M. Makarova, M. Li, R. Chen, T. Kamins, J. Vuckovic, and J. Harris, “Efficient luminescence in highly tensile-strained germanium,” IEEE Int. Conf. on Group IV Photonics, 265–267 (2009).
  10. C. Boztug, F. Chen, J. Sanchez-Perez, F. Sudradjat, D. Paskiewicz, R. Jacobson, M. Lagally, and R. Paiella, “Direct-bandgap germanium active layers pumped above transparency based on tensilely strained nanomembranes,” CLEO:2011, PDPA2 (2011).
  11. T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett.79(12), 1798 (2001). [CrossRef]
  12. J. R. Jain, D. S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics,” Opt. Mater. Express1(6), 1121–1126 (2011). [CrossRef]
  13. Y. Hoshi, K. Sawano, K. Hamaya, M. Miyao, and Y. Shiraki, “Formation of tensilely strained Germanium-on-Insulator,” Appl. Phys. Express5(1), 015701 (2012). [CrossRef]
  14. S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, and S. Takagi, “Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique,” Appl. Phys. Lett.83(17), 3516 (2003). [CrossRef]
  15. S. Nakaharai, T. Tezuka, N. Hirashita, E. Toyoda, Y. Moriyama, N. Sugiyama, and S. Takagi, “Formation process of high-purity Ge-on-insulator layers by Ge-condensation technique,” J. Appl. Phys.105(2), 024515–024518 (2009). [CrossRef]
  16. P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, “Raman characterization of strain and composition in small-sized self-assembled Si/Ge dots,” Phys. Rev. B68(12), 125302 (2003). [CrossRef]
  17. M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Appl. Phys. Lett.94(19), 191107 (2009). [CrossRef]
  18. S. Zafar, K. A. Conrad, Q. Liu, E. A. Irene, G. Hames, R. Kuehn, and J. J. Wortman, “Thickness and effective electron mass measurements for thin silicon dioxide films using tunneling current oscillations,” Appl. Phys. Lett.67(7), 1031 (1995). [CrossRef]
  19. M. I. Vexler, S. E. Tyaginov, and A. F. Shulekin, “Determination of the hole effective mass in thin silicon dioxide film by means of an analysis of characteristics of a MOS tunnel emitter transistor,” J. Phys. Condens. Matter17(50), 8057–8068 (2005). [CrossRef]
  20. G. A. Slack and S. F. Bartram, “Thermal expansion of some diamondlike crystals,” J. Appl. Phys.46(1), 89 (1975). [CrossRef]
  21. D. D. Cannon, J. Liu, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, “Tensile strained epitaxial Ge films on Si (100) substrates with potential application in L-band telecommunications,” Appl. Phys. Lett.84(6), 906–908 (2004). [CrossRef]
  22. H. Tada, A. E. Kumpel, R. E. Lathrop, J. B. Slanina, P. Nieva, P. Zavracky, I. N. Miaoulis, and P. Y. Wong, “Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures,” J. Appl. Phys.87(9), 4189 (2000). [CrossRef]
  23. J. Jiang, H. Lindelov, L. Gerward, K. Ståhl, J. Recio, P. Mori-Sanchez, S. Carlson, M. Mezouar, E. Dooryhee, A. Fitch, and D. Frost, “Compressibility and thermal expansion of cubic silicon nitride,” Phys. Rev. B65(16), 161202 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited