OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 681–689

All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging

Mikhail N. Slipchenko, Joseph D. Miller, Sukesh Roy, James R. Gord, and Terrence R. Meyer  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 681-689 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-diode-pumped, multistage Nd:YAG amplifier is investigated as a means of extending the duration of high-power, burst-mode laser pulse sequences to an unprecedented 30 ms or more. The laser generates 120 mJ per pulse at 1064.3 nm with a repetition rate of 10 kHz, which is sufficient for a wide range of planar laser diagnostics based on fluorescence, Raman scattering, and Rayleigh scattering, among others. The utility of the technique is evaluated for image sequences of formaldehyde fluorescence in a lifted methane–air diffusion flame. The advantages and limitations of diode pumping are discussed, along with long-pulse diode-bar performance characteristics to guide future designs.

© 2013 OSA

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(140.3280) Lasers and laser optics : Laser amplifiers
(300.2530) Spectroscopy : Fluorescence, laser-induced
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 8, 2012
Revised Manuscript: December 19, 2012
Manuscript Accepted: December 19, 2012
Published: January 7, 2013

Mikhail N. Slipchenko, Joseph D. Miller, Sukesh Roy, James R. Gord, and Terrence R. Meyer, "All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging," Opt. Express 21, 681-689 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B96(2-3), 241–245 (2009). [CrossRef]
  2. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B95(1), 23–29 (2009). [CrossRef]
  3. B. Böhm, C. Heeger, R. Gordon, and A. Dreizler, “New perspectives on turbulent combustion: multi-parameter high-speed planar laser diagnostics,” Flow, Turbul. Combust.86(3-4), 313–341 (2011). [CrossRef]
  4. M. Juddoo and A. R. Masri, “High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation,” Combust. Flame158(5), 902–914 (2011). [CrossRef]
  5. A. Johchi, M. Tanahashi, M. Shimura, J.-M. Choi, and T. Miyauchi, “High repetition rate simultaneous CH/OH PLIF in turbulent jet flame,” in 16th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics(Lisbon, Portugal, 2012).
  6. P. Weigand, W. Meier, X. Duan, R. Giezendanner-Thoben, and U. Meier, “Laser diagnostic study of the mechanism of a periodic combustion instability in a gas turbine model combustor,” Flow, Turbul. Combust.75(1-4), 275–292 (2005). [CrossRef]
  7. W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals,” Appl. Phys. B86(1), 1–5 (2006). [CrossRef]
  8. P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett.25(22), 1639–1641 (2000). [CrossRef] [PubMed]
  9. B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt.43(26), 5064–5073 (2004). [CrossRef] [PubMed]
  10. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett.34(9), 1309–1311 (2009). [CrossRef] [PubMed]
  11. B. S. Thurow, A. Satija, and K. Lynch, “Third-generation megahertz-rate pulse burst laser system,” Appl. Opt.48(11), 2086–2093 (2009). [CrossRef] [PubMed]
  12. N. Jiang, M. C. Webster, and W. R. Lempert, “Advances in generation of high-repetition-rate burst mode laser output,” Appl. Opt.48(4), B23–B31 (2009). [CrossRef] [PubMed]
  13. R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering,” Appl. Phys. B108(2), 377–392 (2012). [CrossRef]
  14. R. Patton, K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012). [CrossRef]
  15. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B68(4), 757–760 (1999). [CrossRef]
  16. N. Jiang and W. R. Lempert, “Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging,” Opt. Lett.33(19), 2236–2238 (2008). [CrossRef] [PubMed]
  17. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt.50(4), A20–A28 (2011). [CrossRef] [PubMed]
  18. N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst.33(1), 767–774 (2011). [CrossRef]
  19. J. D. Miller, S. R. Engel, J. W. Tröger, T. R. Meyer, T. Seeger, and A. Leipertz, “Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator,” Appl. Opt.51(14), 2589–2600 (2012). [CrossRef] [PubMed]
  20. J. D. Miller, S. R. Engel, T. R. Meyer, T. Seeger, and A. Leipertz, “High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator,” Opt. Lett.36(19), 3927–3929 (2011). [CrossRef] [PubMed]
  21. K. Gabet, R. Patton, N. Jiang, W. Lempert, and J. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B106(3), 569–575 (2012). [CrossRef]
  22. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett.37(8), 1346–1348 (2012). [CrossRef] [PubMed]
  23. K. Gabet, N. Jiang, W. Lempert, and J. Sutton, “Demonstration of high-speed 1D Raman scattering line imaging,” Appl. Phys. B101(1-2), 1–5 (2010). [CrossRef]
  24. F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012). [CrossRef] [PubMed]
  25. S. Kotake and K. Takamoto, “Combustion noise: effects of the velocity turbulence of unburned mixture,” J. Sound Vibrat.139(1), 9–20 (1990). [CrossRef]
  26. Y.-C. Chao, Y.-L. Chang, C.-Y. Wu, and T.-S. Cheng, “An experimental investigation of the blowout process of a jet flame,” Proc. Combust. Inst.28(1), 335–342 (2000). [CrossRef]
  27. T. Lieuwen, Y. Neumeier, and B. T. Zinn, “The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors,” Combust. Sci. Technol.135(1-6), 193–211 (1998). [CrossRef]
  28. W. Koechner, Solid-State Laser Engineering (Springer Science + Business Media, Inc., New York, 2006).
  29. W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys.44(7), 3162–3170 (1973). [CrossRef]
  30. S. Epstein, “Temperature-induced changes in optical path length for a Nd-doped glass rod during pumping,” J. Appl. Phys.38(7), 2715–2719 (1967). [CrossRef]
  31. G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys.38(7), 2726–2738 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4391 KB)     
» Media 2: AVI (1338 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited