OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 690–697

An optical FPGA: Reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing

Jochen Schröder, Michaël A. F. Roelens, Liang B. Du, Arthur J. Lowery, Steve Frisken, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 690-697 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1134 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a pulse-shaping technique that allows for spectrally resolved splitting of an input signal to multiple output ports. This ability enables reconfigurable creation of splitters with complex wavelength-dependent splitting ratios, giving similar flexibility to a Field Programmable Gate Array (FPGA) in electronics. Our technique can be used to create reprogrammable optical (interferometric) circuits, by emulating their multi-port spectral transfer functions instead of the traditional method of creating an interferometer by splitting and recombining the light with an added delay. We demonstrate the capabilities of this technique by creating a Mach-Zehnder interferometer, an all-optical discrete Fourier transform filter, two nested Mach-Zehnder interferometers and a complex splitter with a triangular-shaped response.

© 2013 OSA

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(090.1760) Holography : Computer holography
(120.2440) Instrumentation, measurement, and metrology : Filters
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 9, 2012
Revised Manuscript: December 20, 2012
Manuscript Accepted: December 21, 2012
Published: January 7, 2013

Jochen Schröder, Michaël A. F. Roelens, Liang B. Du, Arthur J. Lowery, Steve Frisken, and Benjamin J. Eggleton, "An optical FPGA: Reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing," Opt. Express 21, 690-697 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000). [CrossRef]
  2. V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms.” Opt. Express16, 11878–87 (2008). [CrossRef] [PubMed]
  3. S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulse generation,” J. Opt. Soc. Am. B27, 1044–1050 (2010). [CrossRef]
  4. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature414, 57–60 (2001). [CrossRef] [PubMed]
  5. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418, 512–514 (2002). [CrossRef] [PubMed]
  6. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in “Optical Fiber Communication Conference Engineers Conference,” (Optical Society of America, 2006), paper OTuF2.
  7. G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photonic Tech. Lett.18, 1819–1821 (2006). [CrossRef]
  8. S. J. Frisken, H. Zhou, D. Abakoumov, G. Baxter, S. Poole, H. Ereifej, and P. Hallemeier, “High performance ’Drop and Continue’ Functionality in a Wavelength Selective Switch,” in “Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,” (Optical Society of America, 2006), paper PDP14.
  9. J. C. Vaughan, T. Feurer, and K. A. Nelson, “Automated spatiotemporal diffraction of ultrashort laser pulses,” Opt. Lett.28, 2408–2410 (2003). [CrossRef] [PubMed]
  10. J. Schröder, O. Brasier, T. D. Vo, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “Simultaneous multi-channel OSNR monitoring with a wavelength selective switch,” Opt. Express18, 22299–22304 (2010). [CrossRef] [PubMed]
  11. J. Schröder, L. B. Du, M. A. Roelens, B. J. Eggleton, and A. J. Lowery, “Reconfigurable all-optical Discrete Fourier Transform in a Wavelength Selective Switch for Optical OFDM demultiplexing,” in “Optical Fiber Communication Conference (OFC),” (Optical Society of America2012), paper OTh1G.6.
  12. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol.26, 73–78 (2008). [CrossRef]
  13. E. Frumker and Y. Silverberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,”, J. Opt. Soc. Am. B24, 2940–2947 (2007). [CrossRef]
  14. J. W. Wilson, P. Schlup, and R. A. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask.,” Opt. Express15, 8979–87 (2007). [CrossRef] [PubMed]
  15. S. Wright and J. Nocedal, “Numerical Optimization” (2006).
  16. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing.” Opt. Express18, 9324–40 (2010). [CrossRef] [PubMed]
  17. A. J. Lowery, “Design of Arrayed-Waveguide Grating Routers for use as optical OFDM demultiplexers.” Opt. Express18, 14129–43 (2010). [CrossRef] [PubMed]
  18. L. B. Du, J. Schröder, B. J. Eggleton, and A. J. Lowery, “Reconfigurable optical OFDM transmitter using an inverse optical Fourier transform.” in “Opto-Electronics and Communications Conference (OECC),” (2012), paper PDP1-1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited