OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 698–709

Biosensing using straight long-range surface plasmon waveguides

Oleksiy Krupin, Hamoudi Asiri, Chen Wang, R. Niall Tait, and Pierre Berini  »View Author Affiliations


Optics Express, Vol. 21, Issue 1, pp. 698-709 (2013)
http://dx.doi.org/10.1364/OE.21.000698


View Full Text Article

Enhanced HTML    Acrobat PDF (1478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Straight long-range surface plasmon waveguides are demonstrated as biosensors for the detection of cells, proteins and changes in the bulk refractive index of solutions. The sensors consist of 5 μm wide 22 nm thick Au stripes embedded in polymer (CYTOPTM) with microfluidic channels etched into the top cladding. Bulk sensing is demonstrated by sequentially injecting six solutions of different refractive indices in 2 × 10−3 RIU increments; such index steps were detected with a signal-to-noise ratio of ~1000. Selective capture of cells is demonstrated using Au waveguides functionalized with antibodies against blood group A, and red blood cells of group A and O in buffer as positive and negative analyte. Bovine serum albumin in buffer was used to demonstrate protein sensing. A monolayer of bovine serum albumin physisorbed on a carboxyl-terminated self-assembled monolayer on Au was detected with a signal-to-noise ratio of ~300. Overall, the biosensor demonstrated a good capability for detecting bulk changes in solution and for sensing analyte over a very wide range of mass (from cells to proteins). The biosensors are compact, inexpensive to fabricate, and may find use over a wide range of cost-sensitive sensing and detection applications.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Sensors

History
Original Manuscript: October 2, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 21, 2012
Published: January 7, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Oleksiy Krupin, Hamoudi Asiri, Chen Wang, R. Niall Tait, and Pierre Berini, "Biosensing using straight long-range surface plasmon waveguides," Opt. Express 21, 698-709 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-1-698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  2. S. Löfås, “Optimizing the hit-to-lead process using SPR analysis,” Assay Drug Dev. Technol.2(4), 407–415 (2004). [PubMed]
  3. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics1(3), 484–588 (2009). [CrossRef]
  4. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol.24(1), 477–494 (2006). [CrossRef]
  5. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005). [CrossRef]
  6. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys.10(10), 105010 (2008). [CrossRef]
  7. S. Löfås and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Soc. Chem. Commun.1526–1528 (1990). [CrossRef]
  8. I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys.100(4), 043104 (2006). [CrossRef]
  9. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Act. B Chem.123(1), 10–12 (2007). [CrossRef]
  10. A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem.77(13), 3904–3907 (2005). [CrossRef] [PubMed]
  11. Y. H. Joo, S. Song, and R. Magnusson, “Demonstration of long-range surface plasmon-polariton waveguide sensors with asymmetric double-electrode structures,” Appl. Phys. Lett.97(20), 201105 (2010). [CrossRef]
  12. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics2(3), 97–106 (2007). [CrossRef]
  13. J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogation,” Opt. Lett.33(5), 512–514 (2008). [CrossRef] [PubMed]
  14. M. Vala, S. Etheridge, J. A. Roach, and J. Homola, “Long-range surface plasmons for sensitive detection of bacterial analytes,” Sens. Actuators B Chem.139(1), 59–63 (2009). [CrossRef]
  15. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng.87(1), 56–61 (2010). [CrossRef]
  16. N. Kinrot, “Analysis of bulk material sensing using a periodically segmented waveguide Mach–Zehnder Interferometer for biosensing,” J. Lightwave Technol.22(10), 2296–2301 (2004). [CrossRef]
  17. B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sens. Actuators A Phys.141(2), 299–306 (2008). [CrossRef]
  18. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem.61(1-3), 100–127 (1999). [CrossRef]
  19. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008). [CrossRef] [PubMed]
  20. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1170 (2005). [CrossRef] [PubMed]
  21. M. Tencer, H.-Y. Nie, and P. Berini, “Electrochemical differentiation and TOF-SIMS characterization of thiol-coated gold features for (bio)chemical sensor applications,” J. Electrochem. Soc.156(12), J386–J392 (2009). [CrossRef]
  22. M. Tencer, A. Olivieri, B. Tezel, H.-Y. Nie, and P. Berini, “Chip-scale electrochemical differentiation of SAM-coated gold features using a probe array,” J. Electrochem. Soc.159(3), J77–J82 (2012). [CrossRef]
  23. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol.24(11), 4391–4402 (2006). [CrossRef]
  24. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004). [CrossRef]
  25. D. F. Hayes, M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, M. C. Miller, J. Matera, W. J. Allard, G. V. Doyle, and L. W. W. M. Terstappen, “Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival,” Clin. Cancer Res.12(14), 4218–4224 (2006). [CrossRef] [PubMed]
  26. H. Asiri, “Fabrication of surface plasmon biosensors in cytop,” Master’s Thesis, Department of Chemical and Biological Engineering, University of Ottawa, Ottawa (2012).
  27. C. Chiu, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B28(4), 729–735 (2010). [CrossRef]
  28. L. M. Fischer, M. Tenje, A. R. Heiskanen, N. Masuda, J. Castillo, A. Bentien, J. Émneus, M. H. Jakobsen, and A. Boisen, “Gold cleaning methods for electrochemical detection applications,” Microelectron. Eng.86(4-6), 1282–1285 (2009). [CrossRef]
  29. T. Greg, Hermanson, Bioconjugate Techniques, 2nd ed.(Academic, 2008), Chap. II(3).
  30. J. G. Quinn, R. O’Kennedy, M. Smyth, J. Moulds, and T. Frame, “Detection of blood group antigens utilising immobilised antibodies and surface plasmon resonance,” J. Immunol. Methods206(1-2), 87–96 (1997). [CrossRef] [PubMed]
  31. V. Silin, H. Weetall, and D. J. Vanderah, “SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs),” J. Colloid Interface Sci.185(1), 94–103 (1997). [CrossRef] [PubMed]
  32. J. A. De Feijter, J. Benjamins, and F. A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers17(7), 1759–1772 (1978). [CrossRef]
  33. M. J. Felipe, P. Dutta, R. Pernites, R. Ponnapati, and R. C. Advincula, “Electropolymerized bioresistant coatings of OEGylated dendroncarbazoles: design parameters and protein resistance SPR studies,” Polymer (Guildf.)53(2), 427–437 (2012). [CrossRef]
  34. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express7(10), 329–335 (2000). [CrossRef] [PubMed]
  35. R. Charbonneau, M. Tencer, N. Lahoud, and P. Berini, “Demonstration of surface sensing using long-range surface plasmon waveguides on silica,” Sens. Actuators B Chem.134(2), 455–461 (2008). [CrossRef]
  36. M. Tencer, R. Charbonneau, N. Lahoud, and P. Berini, “AFM study of BSA adlayers on Au stripes,” Appl. Surf. Sci.253(23), 9209–9214 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited