OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 724–729

Laser-driven microflow-induced bistable orientation of a nematic liquid crystal in perfluoropolymer-treated unrubbed cells

V. S. R. Jampani, M. Sǩarabot, H. Takezoe, I. Muševič, and S. Dhara  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 724-729 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate laser-driven microflow-induced orientational change (homeotropic to planar) in a dye-doped nematic liquid crystal. The homeotropic to planar director alignment is achieved in unrubbed cells in the thermal hysteresis range of a discontinuous anchoring reorientation transition due to the local heating by light absorption in dye-doped sample. Various bistable patterns were recorded in the cell by a programmable laser tweezers. The width of the patterns depend on the scanning speed of the tightly focussed laser beam and the minimum width obtained is ≃0.57μm which is about 35 times smaller than the earlier report in the rubbed cells. We show that the motion of the microbeam spot causes local flow as a result the liquid crystal director is aligned along that direction.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Devices

Original Manuscript: November 15, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 5, 2012
Published: January 7, 2013

V. S. R. Jampani, M. Sǩarabot, H. Takezoe, I. Muševič, and S. Dhara, "Laser-driven microflow-induced bistable orientation of a nematic liquid crystal in perfluoropolymer-treated unrubbed cells," Opt. Express 21, 724-729 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag Inc., 1994). [CrossRef]
  2. D. Andrienko, A. Dyadyusha, Y. Kurioz, V. Reshetnyak, and Y. Reznikov, “Light-induced anchoring transitions and bistable nematic alignment on polysiloxane-based aligning surface,” Mol. Cryst. Liq. Cryst.321, 299–307 (1998). [CrossRef]
  3. J. Niitsuma, M. Yoneya, and H. Yokoyama, “Contact photolithographic micropatterning for bistable nematic liquid crystal displays,” Appl. Phys. Lett.92, 241120 (2008). [CrossRef]
  4. J. S. Gwag, J. H. Kim, M. Yoney, and H. Yokoyama, “Surface nematic bistability at nanoimprinted topography,” Appl. Phys. Lett.92, 153110 (2008). [CrossRef]
  5. G. D. Boyd, J. Cheng, and P. D. T. Ngo, “Liquid crystal orientational bistability and nematic storage effects,” Appl. Phys. Lett.36, 556–558 (1980). [CrossRef]
  6. D. W. Berreman and W. R. Heffner, “New bistable liquid crystal twist cell,” J. Appl. Phys.52, 3032–3039 (1981). [CrossRef]
  7. R. Barberi, M. Boix, and G. Durand, “Electrically controlled surface bistability in nematic liquid crystals,” Appl. Phys. Lett.55, 2506–2508 (1989). [CrossRef]
  8. J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, “Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns,” Appl. Phys. Lett.78, 3055–3057 (2001). [CrossRef]
  9. M. Yoneya, J. H. Kim, and H. Yokoyama, “Multistable nematic liquid crystal device using nanoscopically patterned surface alignment,” Appl. Phys. Lett.80, 1034–1035 (2002).
  10. J. H. Kim, M. Yoney, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420, 159–162 (2002). [CrossRef] [PubMed]
  11. J. H. Kim, M. Yoney, J. Yamamoto, and H. Yokoyama, “Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization,” Nanotechnology13, 133–137 (2002). [CrossRef]
  12. Y. Kurioz, D. Kurysh, V. Reshetnyak, and Y. Reznikov, “Temperature induced anchoring transition in nematic liquid crystal cell,” Proc. SPIE5257, 128–131 (2003). [CrossRef]
  13. J. S. Patel and H. Yokoyama, “Continuous anchoring transition in liquid crystals,” Nature (London)362, 525–527 (1993). [CrossRef]
  14. S. Dhara, J. K. Kim, S. M. Jeong, R. Kogo, F. Araoka, K. Ishikawa, and H. Takezoe, “Anchoring transitions of transversely polar liquid-crystal molecules on perfluoropolymer surfaces,” Phys. Rev. E79, 060701R (2009). [CrossRef]
  15. J. K. Kim, F. Araoka, S.M. Jeong, S. Dhara, K. Ishikawa, and H. Takezoe, “Bistable device using anchoring transition of nematic liquid crystals,” Appl. Phys. Lett.95, 063505 (2009). [CrossRef]
  16. J. K. Kim, K. V. Le, S. Dhara, F. Araoka, K. Ishikawa, and H. Takezoe, “Heat-driven and electric-field-driven bistable devices using dye-doped nematic liquid crystals,” J. Appl. Phys.107, 123108 (2010). [CrossRef]
  17. T. A. Kumar, K. V. Le, S. Aya, S. Kang, F. Araoka, K. Ishikawa, S. Dhara, and H. Takezoe, “Anchoring transition in a nematic liquid crystal doped with chiral agents,” Phase Transitions85, 888–899 (2012). [CrossRef]
  18. S. M. Jeong, J. K. Kim, Y. Shimbo, F. Araoka, S. Dhara, N. Y. Ha, K. Ishikawa, and H. Takezoe, “Perfluoropolymer surface for shock-free homeotropic alignment of smectic liquid crystals,” Adv. Mater.22, 34–38 (2010). [CrossRef] [PubMed]
  19. S. Dhara and N. V. Madhusudana, “Physical characterisation of 4-butyl-4-heptyl-bicyclohexyl- 4-carbonitrile,” Phase Transitions81, 561–569 (2008). [CrossRef]
  20. T. A. Kumar, V. S. S. Sastry, K. Ishikawa, H. Takezoe, N.V. Madhusudana, and S. Dhara, “Effect of an electric field on defects in a nematic liquid crystal with variable surface anchoring,” Liq. Cryst.38, 971–979 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited