OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 740–755

Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer

Yin Wang, Michal Nikodem, and Gerard Wysocki  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 740-755 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1621 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new detection method for Faraday rotation spectra of paramagnetic molecular species is presented. Near shot-noise limited performance in the mid-infrared is demonstrated using a heterodyne enhanced Faraday rotation spectroscopy (H-FRS) system without any cryogenic cooling. Theoretical analysis is performed to estimate the ultimate sensitivity to polarization rotation for both heterodyne and conventional FRS. Sensing of nitric oxide (NO) has been performed with an H-FRS system based on thermoelectrically cooled 5.24 μm quantum cascade laser (QCL) and a mercury-cadmium-telluride photodetector. The QCL relative intensity noise that dominates at low frequencies is largely avoided by performing the heterodyne detection in radio frequency range. H-FRS exhibits a total noise level of only 3.7 times the fundamental shot noise. The achieved sensitivity to polarization rotation of 1.8 × 10−8 rad/Hz1/2 is only 5.6 times higher than the ultimate theoretical sensitivity limit estimated for this system. The path- and bandwidth-normalized NO detection limit of 3.1 ppbv-m/Hz1/2 was achieved using the R(17/2) transition of NO at 1906.73 cm−1.

© 2013 OSA

OCIS Codes
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6390) Spectroscopy : Spectroscopy, molecular
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:

Original Manuscript: October 8, 2012
Revised Manuscript: November 20, 2012
Manuscript Accepted: December 21, 2012
Published: January 7, 2013

Yin Wang, Michal Nikodem, and Gerard Wysocki, "Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer," Opt. Express 21, 740-755 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity Enhancement of Laser-Absorption Spectroscopy by Magnetic Rotation Effect,” J. Chem. Phys.72(12), 6602–6605 (1980). [CrossRef]
  2. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984). [CrossRef]
  3. M. Koch, X. Luo, P. Murtz, W. Urban, and K. Morike, “Detection of small traces of 15N2 and 15N2 by Faraday LMR spectroscopy of the corresponding isotopomers of nitric oxide,” Appl. Phys. B64(6), 683–688 (1997). [CrossRef]
  4. H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys.101(4-5), 545–550 (2003). [CrossRef]
  5. T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B93(2-3), 713–723 (2008). [CrossRef]
  6. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009). [CrossRef] [PubMed]
  7. P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B103(2), 451–459 (2011). [CrossRef]
  8. J. M. Smith, J. C. Bloch, R. W. Field, and J. L. Steinfeld, “Trace Detection of NO2 by Frequency-Modulation-Enhanced Magnetic Rotation Spectroscopy,” J. Opt. Soc. Am. B12(6), 964–969 (1995). [CrossRef]
  9. W. Dillenschneider and R. F. Curl., “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc.99(1), 87–97 (1983). [CrossRef]
  10. R. J. Brecha, L. M. Pedrotti, and D. Krause, “Magnetic rotation spectroscopy of molecular oxygen with a diode laser,” J. Opt. Soc. Am. B14(8), 1921–1930 (1997). [CrossRef]
  11. S. G. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011). [CrossRef]
  12. J. Pfeiffer, D. Kirsten, P. Kalkert, and W. Urban, “Sensitive Magnetic Rotation Spectroscopy of the Oh Free-Radical Fundamental-Band with a Color Center Laser,” Appl. Phys. B26(3), 173–177 (1981). [CrossRef]
  13. W. Zhao, G. Wysocki, W. Chen, E. Fertein, D. Le Coq, D. Petitprez, and W. Zhang, “Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm,” Opt. Express19(3), 2493–2501 (2011). [CrossRef] [PubMed]
  14. M. Nikodem and G. Wysocki, “Molecular dispersion spectroscopy--new capabilities in laser chemical sensing,” Ann. N. Y. Acad. Sci.1260(1), 101–111 (2012). [CrossRef] [PubMed]
  15. A. Hinz, D. Zeitz, W. Bohle, and W. Urban, “A Faraday Laser Magnetic-Resonance Spectrometer for Spectroscopy of Molecular Radical Ions,” Appl. Phys. B36(1), 1–4 (1985). [CrossRef]
  16. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A Differential Detection Scheme for Faraday-Rotation Spectroscopy with a Color Center Laser,” Appl. Phys. B.34(4), 179–185 (1984). [CrossRef]
  17. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.69(11), 3763–3769 (1998). [CrossRef]
  18. P. C. D. Hobbs, “Shot noise limited optical measurement at baseband with noisy lasers,” in Laser Noise, R. Roy, ed. (Proc. SPIE, 1991), pp. 216–221.
  19. K. L. Haller and P. C. D. Hobbs, “Double-beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceler,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications,(1991), pp. 298–309.
  20. G. Durry, I. Pouchet, N. Amarouche, T. Danguy, and G. Megie, “Shot-noise-limited dual-beam detector for atmospheric trace-gas monitoring with near-infrared diode lasers,” Appl. Opt.39(30), 5609–5619 (2000). [CrossRef] [PubMed]
  21. X. Wang, M. Jefferson, P. C. D. Hobbs, W. P. Risk, B. E. Feller, R. D. Miller, and A. Knoesen, “Shot-noise limited detection for surface plasmon sensing,” Opt. Express19(1), 107–117 (2011). [CrossRef] [PubMed]
  22. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B72(1), 127–135 (2001). [CrossRef]
  23. N. C. Wong and J. L. Hall, “Servo control of amplitude-modulation in frequency-modulation spectroscopy - demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B2(9), 1527–1533 (1985). [CrossRef]
  24. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage., “Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry--Perot ring-cavity premode cleaner,” Opt. Lett.23(21), 1704–1706 (1998). [CrossRef] [PubMed]
  25. P. Kwee, B. Willke, and K. Danzmann, “Shot-noise-limited laser power stabilization with a high-power photodiode array,” Opt. Lett.34(19), 2912–2914 (2009). [CrossRef] [PubMed]
  26. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express15(23), 15207–15213 (2007). [CrossRef] [PubMed]
  27. M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE56(1), 37–46 (1968). [CrossRef]
  28. S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys.56(3), 235–245 (1988). [CrossRef]
  29. E. N. Gilbert and H. O. Pollak, “Amplitude Distribution of Shot Noise,” AT&T Tech J 39, 333–350 (1960).
  30. M. Xiao, L. A. Wu, and H. J. Kimble, “Precision measurement beyond the shot-noise limit,” Phys. Rev. Lett.59(3), 278–281 (1987). [CrossRef] [PubMed]
  31. T. Gensty, W. Elsäßer, and C. Mann, “Intensity noise properties of quantum cascade lasers,” Opt. Express13(6), 2032–2039 (2005). [CrossRef] [PubMed]
  32. F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B65(12), 125313 (2002). [CrossRef]
  33. Y. Wang, M. Nikodem, J. Hoyne, and G. Wysocki, “Heterodyne-enhanced Faraday rotation spectrometer,” Proc. SPIE 8268, 2F1–8 (2012).
  34. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO - the Laser-Interferometer-Gravitational-Wave-Observatory,” Science256(5055), 325–333 (1992). [CrossRef] [PubMed]
  35. Y. Wang, M. Nikodem, B. Brumfield, and G. Wysocki, “Compact multi-pass cell based Faraday rotation spectrometer for nitric oxide detection,” in Conference on Lasers and Electro-Optics (CLEO)(2012), p. CW3B.
  36. E. J. Galvez and P. M. Koch, “Use of four mirrors to rotate linear polarization but preserve input-output collinearity. II,” J. Opt. Soc. Am. A14(12), 3410–3414 (1997). [CrossRef] [PubMed]
  37. C. D. Boone, F. W. Dalby, and I. Ozier, “Magnetic rotation molecular spectroscopy using an oscillating field,” J. Chem. Phys.113(19), 8594–8607 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited