OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 781–788

Evaluation of correlative coding and DP-16QAM n-channel 112Gbit/s coherent transmission: digital non-linear compensation perspective

Rameez Asif, Chien-Yu Lin, Michael Holtmannspoetter, and Bernhard Schmauss  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 781-788 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically report on the complexity reduction of digital backward propagation (DBP) by utilizing correlative encoded transmission (dual-polarization quadrature duobinary) at a bit-rate of 112Gbit/s over 1640km fiber link. The single channel (N=1) and multi-channel (N=10) transmission performances are compared in this paper. In case of multi-channel system, 10 transmitters are multiplexed with 25GHz channel spacing. The fiber link consists of Large Aeff Pure-Silica core fiber with 20 spans of 82km each. No in-line optical dispersion compensator is employed in the link. The system performances are evaluated by monitoring the bit-error-ratio and the forward error correction limit corresponds to bit-error-ratio of 3.8×10−3. The DBP algorithm is implemented after the coherent detection and is based on the logarithmic step-size based split-step Fourier method. The results depict that dual-polarization quadrature duobinary can be used to transmit 112Gbit/s signals with an spectral efficiency of 4-b/s/Hz, but at the same time has a higher tolerance to nonlinear transmission impairments. By utilizing dual-polarization quadrature duobinary modulation, comparative system performance with respect to dual-polarization 16-quadrature amplitude modulation transmission can be achieved with 60% less computations and with a step-size of 205km.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Subsystems for Optical Networks

Original Manuscript: October 1, 2013
Revised Manuscript: November 15, 2012
Manuscript Accepted: November 16, 2012
Published: January 8, 2013

Virtual Issues
European Conference on Optical Communication 2012 (2012) Optics Express

Rameez Asif, Chien-Yu Lin, Michael Holtmannspoetter, and Bernhard Schmauss, "Evaluation of correlative coding and DP-16QAM n-channel 112Gbit/s coherent transmission: digital non-linear compensation perspective," Opt. Express 21, 781-788 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express16, 880–888 (2008). [CrossRef] [PubMed]
  2. E. Ip and J.M. Kahn, “Compensation of dispersion and non-linear impairments using digital backpropagation,” J. Lightwave Technol.26(20), 3416–3425 (2008). [CrossRef]
  3. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron.16(5), 1217–1226 (2010). [CrossRef]
  4. C. R. S Fludger, T. Duthel, D. van den Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. De Man, G.D Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol.26(1), 64–72 (2008). [CrossRef]
  5. P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol.24(12), 4711–4728 (2006). [CrossRef]
  6. M. S. Alfiad, F. Machi, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt, “Feasibility study for 111 Gb/s Polmux quadrature duobinary with a SE of 4.2 b/s/Hz,” OptoeElectronics and Communications Conference (OECC), 448–449, July (2010).
  7. X. Zhou, J. Yu, M. F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H. B. Matthew, and S. K. Mishra, “Transmission of 32-Tb/s capacity over 580 km Using RZ-shaped PDM-8QAM modulation format and cascaded Mmltimodulus blind equalization algorithm,” J. Lightwave Technol.28(4), 456–465 (2010). [CrossRef]
  8. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol.27(16), 3705–3713 (2009). [CrossRef]
  9. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, ”1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express20, 12508–12514 (2012). [CrossRef] [PubMed]
  10. A. Lender, “The duobinary technique for high speed data transmission,” IEEE Trans. Commun. Electron.82, 214–218 (1963).
  11. M. E. Said, J. Sitch, and M. I. Elmasry, “An electrically pre-equalized 10-Gb/s duobinary transmission system,” J. Lightwave Technol.23, 388–400 (2005). [CrossRef]
  12. S. K. Ibrahim, S. Bhandare, and R. Noe, “Performance of 20 Gb/s quaternary intensity modulation based on binary or duobinary modulation in two quadratures with unequal amplitudes,” IEEE J. Sel. Top. Quantum Electron., 12(4), 596–602 (2006). [CrossRef]
  13. K. Kikuchi, Y. Ishikawa, and K. KATOH, “Coherent demodulation of optical quadrature duobinary signal with spectral efficiency of 4 bit/s/Hz per polarization,” 33rd European Conference and Ehxibition on Optical Communication (ECOC), P93.4, September (2007).
  14. J. H. Chang, K. Y. Cho, H. Y. Hoi, Y. Takushima, and Y. C. Chung, “Filtering tolerance of 108-Gb/s pol-Mux quadrature duobinary signal on 25-GHz grid,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), OMR4, March (2011).
  15. S. Zhang, F. Yaman, X. Lei, S. Yin, and W. Ting, “Generation of optical quadrature duobinary format using optical delay interferometer,” 37th European Conference and Ehxibition on Optical Communication (ECOC), We.7.A.4, September (2011).
  16. I. Lyubomirsky, “Quadrature duobinary for high-spectraleEfficiency 100G Transmission,” J. Lightwave Technol.28(1), 91–96 (2010). [CrossRef]
  17. F. Machi, M. S. Alfiad, M. Kuschnerov, T. Wuth, D. van den Borne, N. Hanik, and H. de Waardt, “111-Gb/s polMux-quadrature duobinary for robust and bandwidth efficient Ttransmission,” IEEE Photonics Technol. Lett.22(11), 751–753 (2010). [CrossRef]
  18. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express18, 22796–22807 (2010). [CrossRef] [PubMed]
  19. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems,” Opt. Commun.285(7), 1814–1818 (2012). [CrossRef]
  20. R. Asif, C. Y. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with un-compensated transmission links,” Opt. Commun.284(24), 5673–5677 (2011). [CrossRef]
  21. C. Y. Lin, M. Holtmannspoetter, R. Asif, and B. Schmauss, “Compensation of transmission impairments by digital backward propagation for different link designs,” 36th European Conference and Ehxibition on Optical Communication (ECOC), P3.16, September (2010).
  22. L. Du and A. Lowery, “Improved single channel back-propagation for intra-channel fiber non-linearity compensation in long-haul optical communication systems,” Opt. Express18, 17075–17088 (2010). [CrossRef] [PubMed]
  23. D. Rafique, J. Zhao, and A. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express19, 5219–5224 (2011). [CrossRef] [PubMed]
  24. C. Y. Lin, R. Asif, M. Holtmannspoetter, and B. Schmauss, “Step-size selection for split-step based nonlinear compensation with coherent detection in 112-Gb/s 16-QAM transmission,” Chin. Opt. Lett10, 020605 (2012). [CrossRef]
  25. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Low-complexity logarithmic step-size-based filtered digital backward propagation algorithm for compensating fiber transmission impairments,” Proc. SPIE828482840R (2012). [CrossRef]
  26. R. Asif, M. Usman, C. Y. Lin, and B. Schmauss, “Application of a digital non-linear compensation algorithm for evaluating the performance of root-raised-cosine pulses in 112 Gbit/s DP-QPSK transmission,” J. Opt.14(9), September (2012). [CrossRef]
  27. R. Asif, C.Y. Lin, and B. Schmauss, “Logarithmic versus modified digital backward propagation algorithm in 224Gbit/s DP-16QAM transmission over dispersion uncompensated fiber links,” Opt. Eng.51(4), 045007 (2012). [CrossRef]
  28. E. Mateo, M. Huang, F. Yaman, T. Wang, Y. Aono, and T. Tajima, “Nonlinearity compensation using very-low complexity backward propagation in dispersion managed links,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), OTh3C.4, March (2011).
  29. D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. Chugtai, and A. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express19, 9453–9460, (2011). [CrossRef] [PubMed]
  30. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” Conference on Optical Fiber communication/National Fiber Optic Engineers Conference (OFC/NFOEC) 2011, paper OWW3, Los Angeles USA, March (2011).
  31. S. Zhang, F. Yaman, X. Lei, S. Yin, and M. Cvijetic, “Pulse shaping on quadrature duobinary format,” IEEE Photonics Society Summer Topical Meeting Series, pp.149–150, 18–20th, July (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited