OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 1 — Jan. 14, 2013
  • pp: 79–86

Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs)

Iman Zand, Mohammad S. Abrishamian, and Pierre Berini  »View Author Affiliations

Optics Express, Vol. 21, Issue 1, pp. 79-86 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1549 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A class of nano-scale wavelength-selective optical filters is proposed where the core of a metal-insulator-metal square ring is replaced with a split-ring core (SRC). The proposed resonator supports split-ring-resonator-like (SRR-like) resonant modes that are characteristics of the structure. These resonant modes are highly adjustable, via the gap size of the split-ring core, over a range of hundreds of nanometers. The proposed resonator can also incorporate tunable materials localized in the gap of the SRC or placed throughout the resonating path. By varying the refractive index (1 to 2) of the material in the gap of the SRC, first and second SRR-like modes can be tuned over ~200 and 300 nm, respectively. A circuit model based on transmission-line theory is proposed for the structure and used to derive the resonance conditions of the split-ring-resonator-like modes; the model compares favorably to the numerical results. The proposed resonator has the potential to be utilized effectively in integrated nano-scale optical switches and tunable filters.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: October 5, 2012
Revised Manuscript: December 10, 2012
Manuscript Accepted: December 10, 2012
Published: January 2, 2013

Iman Zand, Mohammad S. Abrishamian, and Pierre Berini, "Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs)," Opt. Express 21, 79-86 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009).
  2. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscalegap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005). [CrossRef]
  3. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metalsubwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005). [CrossRef]
  4. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14(26), 13030–13042 (2006). [CrossRef] [PubMed]
  5. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett.90(18), 181102 (2007). [CrossRef]
  6. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express14(7), 2932–2937 (2006). [CrossRef] [PubMed]
  7. Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express17(15), 12678–12684 (2009). [CrossRef] [PubMed]
  8. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express17(26), 24096–24101 (2009). [CrossRef] [PubMed]
  9. B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide,” J. Phys. D Appl. Phys.43(38), 385102 (2010). [CrossRef]
  10. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys.43(5), 055103 (2010). [CrossRef]
  11. J. Tao, Q. J. Wang, and X. G. Huang, “All-Optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6(4), 753–759 (2011). [CrossRef]
  12. I. Zand, A. Mahigir, T. Pakizeh, and M. S. Abrishamian, “Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators,” Opt. Express20(7), 7516–7525 (2012). [CrossRef] [PubMed]
  13. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16(21), 16314–16325 (2008). [CrossRef] [PubMed]
  14. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  15. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18(6), 6191–6204 (2010). [CrossRef] [PubMed]
  16. C. Minand and G. Veronis, “Absorption switches in metal-dielectric-metalplasmonic waveguides,” Opt. Express19, 10757–10766 (2009).
  17. I. Zand, M. Bahramipanah, M. S. Abrishamian, and J. M. Liu, “Metal-Insulator-Metal loop-stub structures,” IEEE Photonics4(6), 2136–2142 (2012). [CrossRef]
  18. Z.-J. Zhong, Y. Xu, S. Lan, Q.-F. Dai, and L.-J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express18(1), 79–86 (2010). [CrossRef] [PubMed]
  19. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett.37(18), 3780–3782 (2012). [PubMed]
  20. A. Noual, A. Akjouj, Y. Pennec, J.-N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11(10), 103020 (2009). [CrossRef]
  21. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett.36(8), 1500–1502 (2011). [CrossRef] [PubMed]
  22. I. Zand, M. S. Abrishamian, and T. Pakizeh, “Nanoplasmonic loaded slot cavities for wavelength filtering and demultiplexing,” IEEE J. Sel. Topics Quantum Electron. (Under Publication 10.1109/JSTQE.2012.2224645). [CrossRef]
  23. Q. Huang, R. Liang, P. Chen, S. Wang, and Y. Xu, “High resonant transmission contrast filter based on the dual side-coupled cavities plasmonic structure,” J. Opt. Soc. Am. B28(8), 1851–1853 (2011). [CrossRef]
  24. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express18(11), 11111–11116 (2010). [CrossRef] [PubMed]
  25. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]
  26. H. T. Chen, W. J. Padilla1, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006).
  27. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express16(24), 19850–19864 (2008). [CrossRef] [PubMed]
  28. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies,” Phys. Rev. Lett.95(22), 223902 (2005). [CrossRef] [PubMed]
  29. D. M. Pozar, Microwave Engineering 2nd ed. (Wiley, New York, 1998).
  30. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett.19(2), 91–93 (2007). [CrossRef]
  31. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]
  32. S. F. A. Kettle, Symmetry and Structure: Readable Group Theory for Chemists, 3rd ed. (Wiley, 2007).
  33. A. Alù, M. Young, and N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B77(14), 144107 (2008). [CrossRef]
  34. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited