OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11652–11658

Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing

Folkert Horst, William M.J. Green, Solomon Assefa, Steven M. Shank, Yurii A. Vlasov, and Bert Jan Offrein  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 11652-11658 (2013)
http://dx.doi.org/10.1364/OE.21.011652


View Full Text Article

Enhanced HTML    Acrobat PDF (1814 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.

© 2013 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: March 5, 2013
Revised Manuscript: April 18, 2013
Manuscript Accepted: April 19, 2013
Published: May 6, 2013

Citation
Folkert Horst, William M.J. Green, Solomon Assefa, Steven M. Shank, Yurii A. Vlasov, and Bert Jan Offrein, "Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing," Opt. Express 21, 11652-11658 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-11652


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, and E. Childers, “Optics for high-performance servers and supercomputers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuH1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OTuH1
  2. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys.43(No. 5B), L673–L675 (2004). [CrossRef]
  3. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform,” J. Lightwave Technol.25(5), 1269–1274 (2007). [CrossRef]
  4. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI aperture,” J. Lightwave Technol.31(1), 87–93 (2013). [CrossRef]
  5. C. Dragone, “Frequency routing device having a wide and substantially flat passband,” U.S. Patent 5488680, 1996.
  6. G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, “An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper TuN1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-1998-TuN1
  7. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges,” Opt. Lett.28(18), 1663–1664 (2003). [CrossRef] [PubMed]
  8. Y. P. Li, C. H. Henry, C. Y. Laskowski, H. H. Yaffe, and R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 µm WDM with −50 dB crosstalk over 100 nm bandwidth,” Electron. Lett.31(24), 2100–2101 (1995). [CrossRef]
  9. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley & Sons Inc., 2001).
  10. F. Horst, W. M. Green, B. Offrein, and Y. A. Vlasov, “Silicon photonic WDM devices: simulation, design and implementation,” Proc. SPIE7386, 73862L, 73862L-9 (2009). [CrossRef]
  11. F. Horst, “Silicon integrated waveguide devices for filtering and wavelength demultiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWJ3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWJ3 [CrossRef]
  12. H. Toba, K. Oda, N. Takato, and K. Nosu, “5GHz-spaced, eight-channel, guided-wave tunable multi/demultiplexer for optical FDM transmission systems,” Electron. Lett.23(15), 788–789 (1987). [CrossRef]
  13. C. G. H. Roeloffzen, F. Horst, B. J. Offrein, R. Germann, G. L. Bona, H. W. M. Salemink, and R. M. de Ridder, “Tunable Passband Flattened 1-from-16 Binary-Tree Structured Add-After-Drop Multiplexer Using SiON Waveguide Technology,” IEEE Photon. Technol. Lett.12(9), 1201–1203 (2000). [CrossRef]
  14. C. H. Henry, E. J. Laskowski, Y. P. Li, and H. H. Yaffe, “Optimized waveguide structure,” US patent 5719976.
  15. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “CMOS Integrated Silicon Nanophotonics: Enabling Technology for Exascale Computational Systems,” presented at SEMICON 2011, Tokyo, Japan.
  16. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications,” Electron Devices Meeting (IEDM), 2012 IEEE International, pp.33.8.1,33.8.3. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6479162&isnumber=6478950 [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited