OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11670–11687

Nonlinear amplification of side-modes in frequency combs

R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. St. J. Russell, T. W. Hänsch, R. Holzwarth, and Th. Udem  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11670-11687 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1404 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate how suppressed modes in frequency combs are modified upon frequency doubling and self-phase modulation. We find, both experimentally and by using a simplified model, that these side-modes are amplified relative to the principal comb modes. Whereas frequency doubling increases their relative strength by 6 dB, the growth due to self-phase modulation can be much stronger and generally increases with nonlinear propagation length. Upper limits for this effect are derived in this work. This behavior has implications for high-precision calibration of spectrographs with frequency combs used for example in astronomy. For this application, Fabry-Pérot filter cavities are used to increase the mode spacing to exceed the resolution of the spectrograph. Frequency conversion and/or spectral broadening after non-perfect filtering reamplify the suppressed modes, which can lead to calibration errors.

© 2013 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6310) Spectroscopy : Spectroscopy, heterodyne

ToC Category:
Nonlinear Optics

Original Manuscript: March 6, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: April 20, 2013
Published: May 6, 2013

R. A. Probst, T. Steinmetz, T. Wilken, H. Hundertmark, S. P. Stark, G. K. L. Wong, P. St. J. Russell, T. W. Hänsch, R. Holzwarth, and Th. Udem, "Nonlinear amplification of side-modes in frequency combs," Opt. Express 21, 11670-11687 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002). [CrossRef] [PubMed]
  2. M. Mayor and D. Queloz, “A Jupiter-mass companion to a solar-type star,” Nature378, 355–359 (1995). [CrossRef]
  3. J. Schneider, “The extrasolar planets encyclopaedia,” http://exoplanet.eu/catalog.php .
  4. J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani, F. Pepe, G. Avila, P. Bonifacio, F. Bouchy, H. Dekker, B. Delabre, S. D’Odorico, V. D’Odorico, S. Levshakov, C. Lovis, M. Mayor, P. Molaro, L. Moscardini, M. T. Murphy, D. Queloz, P. Shaver, S. Udry, T. Wiklind, and S. Zucker, “Cosmic dynamics in the era of extremely large telescopes,” Mon. Not. R. Astron. Soc.386, 1192–1218 (2008). [CrossRef]
  5. M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hänsch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc.380, 839–847 (2007). [CrossRef]
  6. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326, 681 (2009). [CrossRef] [PubMed]
  7. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express15, 13155–13166 (2007). [CrossRef] [PubMed]
  8. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett.37, 3522–3524 (2012). [CrossRef] [PubMed]
  9. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008). [CrossRef] [PubMed]
  10. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1,” Nature452, 610–612 (2008). [CrossRef] [PubMed]
  11. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D48, 57–66 (2008). [CrossRef]
  12. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, and Th. Udem, “Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B96, 251–256 (2009). [CrossRef]
  13. G. Chang, C.-H. Li, D. F. Phillips, R. L. Walsworth, and F. X. Kaertner, “Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers,” Opt. Express18, 12736–12747 (2010). [CrossRef] [PubMed]
  14. C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s−1,” Opt. Express18, 13239–13249 (2010). [CrossRef] [PubMed]
  15. S. P. Stark, T. Steinmetz, R. A. Probst, H. Hundertmark, T. Wilken, T. W. Hänsch, Th. Udem, P. St. J. Russell, and R. Holzwarth, “14 GHz visible supercontinuum generation: calibration sources for astronomical spectrographs,” Opt. Express19, 15690–15695 (2011). [CrossRef] [PubMed]
  16. T. Wilken, G. Lo Curto, R. A. Probst, T. Steinmetz, A. Manescau, L. Pasquini, J. I. Gonzalez Hernandez, R. Rebolo, T. W. Haensch, Th. Udem, and R. Holzwarth, “A spectrograph for exoplanet observations calibrated at the centimetre-per-second level,” Nature485, 611–614 (2012). [CrossRef] [PubMed]
  17. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81, 063105 (2010). [CrossRef] [PubMed]
  18. A. J. Benedick, G. Chang, J. R. Birge, L.-J. Chen, A. G. Glenday, C.-H. Li, D. F. Phillips, A. Szentgyorgyi, S. Korzennik, G. Furesz, R. L. Walsworth, and F. X. Kärtner, “Visible wavelength astro-comb,” Opt. Express18, 19175–19184 (2010). [CrossRef] [PubMed]
  19. M. T. Murphy, C. R. Locke, P. S. Light, A. N. Luiten, and J. S. Lawrence, “Laser frequency comb techniques for precise astronomical spectroscopy,” Mon. Not. R. Astron. Soc.422, 761–771 (2012). [CrossRef]
  20. D. F. Phillips, A. G. Glenday, C.-H. Li, C. Cramer, G. Furesz, G. Chang, A. J. Benedick, L.-J. Chen, F. X. Kärtner, S. Korzennik, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb,” Opt. Express20, 13711–13726 (2012). [CrossRef] [PubMed]
  21. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express20, 6631–6643 (2012). [CrossRef] [PubMed]
  22. T. Wilken, R. Probst, T. W. Hänsch, Th. Udem, T. Steinmetz, R. Holzwarth, A. Manescau, G. L. Curto, L. Pasquini, S. Stark, H. Hundertmark, and P. St. J. Russell, “Suppressed mode recovery in nonlinear fibers of a Fabry-Perot-filtered frequency comb,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. CWQ2.
  23. G. Chang, C.-H. Li, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kärtner, “Optimization of filtering schemes for broadband astro-combs,” Opt. Express20, 24987–25013 (2012). [CrossRef] [PubMed]
  24. G. P. Agrawal, Nonlinear Fiber Optics(Academic, 1989).
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++(Cambridge University, 2002).
  26. M. S. Kang, A. Nazarkin, A. Brenn, and P. St. J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys.5, 276–280 (2009). [CrossRef]
  27. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode-laser system for atomic physics,” Opt. Commun.117, 541–549 (1995). [CrossRef]
  28. Z. F. Fan, P. J. S. Heim, and M. Dagenais, “Highly coherent RF signal generation by heterodyne optical phase locking of external cavity semiconductor lasers,” IEEE Photonics Technol. Lett.10, 719–721 (1998). [CrossRef]
  29. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405, L16–L20 (2010). [CrossRef]
  30. H.-P. Doerr, T. Steinmetz, R. Holzwarth, T. Kentischer, and W. Schmidt, “Laser frequency comb system for absolute calibration of the VTT echelle spectrograph,” Solar Phys.280, 663–670 (2012). [CrossRef]
  31. H.-P. Doerr, T. J. Kentischer, T. Steinmetz, R. A. Probst, M. Franz, R. Holzwarth, Th. Udem, T. W. Hänsch, and W. Schmidt, “Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph,” Proc. SPIE8450, 84501G (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited