OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11688–11697

Interplay between localization and absorption in disordered waveguides

Alexey G. Yamilov and Ben Payne  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 11688-11697 (2013)
http://dx.doi.org/10.1364/OE.21.011688


View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work presents results of ab-initio simulations of continuous wave transport in disordered absorbing waveguides. Wave interference effects cause deviations from diffusive picture of wave transport and make the diffusion coefficient position- and absorption-dependent. As a consequence, the true limit of a zero diffusion coefficient is never reached in an absorbing random medium of infinite size, instead, the diffusion coefficient saturates at some finite constant value. Transition to this absorption-limited diffusion exhibits a universality which can be captured within the framework of the self-consistent theory (SCT) of localization. The results of this work (i) justify use of SCT in analyses of experiments in localized regime, provided that absorption is not weak; (ii) open the possibility of diffusive description of wave transport in the saturation regime even when localization effects are strong.

© 2013 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(290.4210) Scattering : Multiple scattering
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Scattering

History
Original Manuscript: March 12, 2013
Manuscript Accepted: April 26, 2013
Published: May 6, 2013

Citation
Alexey G. Yamilov and Ben Payne, "Interplay between localization and absorption in disordered waveguides," Opt. Express 21, 11688-11697 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-11688


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  2. M. C. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys.71, 313–371 (1999). [CrossRef]
  3. S. Chandresekhar, Radiative Transfer (Dover, New York, 1960).
  4. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging(Wiley-Interscience, 2007).
  5. D. Vollhardt and P. Wölfle, “Diagrammatic, self-consistent treatment of the anderson localization problem in d≤ 2 dimensions,” Phys. Rev. B22, 4666–4679 (1980). [CrossRef]
  6. J. Kroha, C. M. Soukoulis, and P. Wölfle, “Localization of classical waves in a random medium: A self-consistent theory,” Phys. Rev. B47, 11093–11096 (1993). [CrossRef]
  7. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev.109, 1492–1505 (1958). [CrossRef]
  8. B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma, “Reflection and transmission of waves near the localization threshold,” Phys. Rev. Lett.84, 4333–4336 (2000). [CrossRef] [PubMed]
  9. N. Cherroret and S. E. Skipetrov, “Microscopic derivation of self-consistent equations of anderson localization in a disordered medium of finite size,” Phys. Rev. E77, 046608 (2008). [CrossRef]
  10. C. Tian, “Supersymmetric field theory of local light diffusion in semi-infinite media,” Phys. Rev. B77, 064205 (2008). [CrossRef]
  11. C. Tian, “Hydrodynamic and field-theoretic approaches to light localization in open media,” Physica E49, 124–153 (2013). [CrossRef]
  12. M. Störzer, P. Gross, C. Aegerter, and G. Maret, “Observation of the critical regime near anderson localization of light,” Phys. Rev. Lett.96, 063904 (2006). [CrossRef] [PubMed]
  13. H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys.4, 945–948 (2008). [CrossRef]
  14. Z. Q. Zhang, A. A. Chabanov, S. K. Cheung, C. H. Wong, and A. Z. Genack, “Dynamics of localized waves: Pulsed microwave transmissions in quasi-one-dimensional media,” Phys. Rev. B79, 144203 (2009). [CrossRef]
  15. T. Sperling, W. Bührer, C. M. Aegerter, and G. Maret, “Direct determination of the transition to localization of light in three dimensions,” Nat. Phot.7, 48–52 (2013). [CrossRef]
  16. B. Payne, A. Yamilov, and S. E. Skipetrov, “Anderson localization as position-dependent diffusion in disordered waveguides,” Phys. Rev. B82, 024205 (2010). [CrossRef]
  17. B. Payne, T. Mahler, and A. Yamilov, “Effect of evanescent channels on position-dependent diffusion in disordered waveguides,” Waves in Random and Complex Media23, 43–55 (2013). [CrossRef]
  18. C. Tian, S. Cheung, and Z. Zhang, “Local diffusion theory for localized waves in open media,” Phys. Rev. Lett.105, 263905 (2010). [CrossRef]
  19. J. B. Pendry, “Symmetry and transport of waves in one-dimensional disordered systems,” Adv. Phys.43, 461–542 (1994). [CrossRef]
  20. A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature404, 850–853 (2000). [CrossRef] [PubMed]
  21. J. Wang and A. Z. Genack, “Transport through modes in random media,” Nature471, 345–348 (2011). [CrossRef] [PubMed]
  22. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett.42, 673–676 (1979). [CrossRef]
  23. L. I. Deych, A. Yamilov, and A. A. Lisyansky, “Scaling in one-dimensional localized absorbing systems,” Phys. Rev. B64, 024201 (2001). [CrossRef]
  24. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with anderson-localized modes,” Science327, 1352–1355 (2010). [CrossRef] [PubMed]
  25. C. W. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys.69, 731–808 (1997). [CrossRef]
  26. P. W. Brouwer, “Transmission through a many-channel random waveguide with absorption,” Phys. Rev. B57, 10526–10536 (1998). [CrossRef]
  27. A. Yamilov, R. Sarma, B. Redding, B. Payne, H. Noh, and H. Cao, “Position-dependent diffusion of light in disordered waveguides,” arXiv:1303.3244 (2013).
  28. A. Mirlin, “Statistics of energy levels and eigen-functions in disordered systems,” Phys. Rep.326, 259–382 (2000). [CrossRef]
  29. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, UK, 2007). [CrossRef]
  30. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett.53, 2169–2172 (1984). [CrossRef]
  31. A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of anderson localization,” Phys. Today62, 24–29 (2009). [CrossRef]
  32. B. Payne, J. Andreasen, H. Cao, and A. Yamilov, “Relation between transmission and energy stored in random media with gain,” Phys. Rev. B82, 104204 (2010). [CrossRef]
  33. P. A. Lee, D. A. Stone, and H. Fukuyamak, “Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field,” Phys. Rev. B35, 1039–1070 (1987). [CrossRef]
  34. P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, “New method for a scaling theory of localization,” Phys. Rev. B22, 3519–3526 (1980). [CrossRef]
  35. B. L. Altshuler, P. A. Lee, and R. A. Webb, eds., Mesoscopic Phenomena in Solids (North Holland, Amsterdam, 1991).
  36. V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Effect of absorption on the wave transport in the strong localization regime,” Phys. Rev. Lett.73, 810–813 (1994). [CrossRef] [PubMed]
  37. A. Yamilov and B. Payne, “Classification of regimes of wave transport in quasi-one-dimensional nonconservative random media,” J. Mod. Opt.57, 1916–1921 (2010). [CrossRef]
  38. L. Y. Zhao, C. Tian, Z. Q. Zhang, and X. D. Zhang, “Unusual Brownian motion of photons in open absorbing media,” arXiv:1304.0516 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited