OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11705–11714

Tuning the phase sensitivity of a double-lambda system with a static magnetic field

Xiwei Xu, Shuo Shen, and Yanhong Xiao  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11705-11714 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2087 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the effect of a DC magnetic field on the phase sensitivity of a double-lambda system coupled by two laser fields, a probe and a pump. It is demonstrated that the gain and the refractive index of the probe can be controlled by either the magnetic field or the relative phase between the two laser fields. More interestingly, when the system reduces to a single-lambda system, turning on the magnetic field transforms the system from a phase-insensitive process to a phase-sensitive one. In the pulsed-probe regime, we observed switching between slow and fast light when the magnetic field or the relative phase was adjusted. Experiments using a coated 87Rb vapor cell produced results in good agreement with our numerical simulation. This work provides a novel and simple means to manipulate phase sensitive electromagnetically-induced-transparency or four-wave mixing, and could be useful for applications in quantum optics, nonlinear optics and magnetometery based on such systems.

© 2013 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.1670) Quantum optics : Coherent optical effects
(300.2570) Spectroscopy : Four-wave mixing

ToC Category:
Atomic and Molecular Physics

Original Manuscript: March 21, 2013
Revised Manuscript: April 28, 2013
Manuscript Accepted: April 29, 2013
Published: May 6, 2013

Xiwei Xu, Shuo Shen, and Yanhong Xiao, "Tuning the phase sensitivity of a double-lambda system with a static magnetic field," Opt. Express 21, 11705-11714 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66,2593–2596 (1991). [CrossRef]
  2. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys.75,457–472 (2003). [CrossRef]
  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77,633–673 (2005). [CrossRef]
  4. Y. Zhang and M. Xiao, Multi-Wave Mixing Processes (Springer, Berlin, 2009). [CrossRef]
  5. S. J. Buckle, S. M. Barnett, P. L. Knigt, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: Phase-dependence in multilevel atomic transitions,” Opt. Acta33,1129–1140 (1986). [CrossRef]
  6. S. P. Krinitzky and D. T. Pegg, “Coherent irradiation of multilevel atoms in branched and cyclic configurations,” Phys. Rev. A33,403–406 (1986). [CrossRef] [PubMed]
  7. E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically induced transparency,” Phys. Rev. A59,2302–2305 (1999). [CrossRef]
  8. M. Sahrai, A. Maleki, R. Hemmati, and M. Mahmoudi, “Transient dispersion and absorption in a V-shaped atomic system,” Eur. Phys. J. D56,105–112 (2010). [CrossRef]
  9. T. M. Preethi, M. Manukumara, K. Asha, J. Vijay, D. A. Roshi, and A. Narayanan, “Phase-sensitive microwave optical double resonance in an N system,” Euro. Phys. Lett.95,34005 (2011). [CrossRef]
  10. J. Dimitrijević and D. Arsenović, “Simple analytical expressions for the analysis of the phase-dependent electromagnetically induced transparency in a double-Λ atomic scheme,” Phys. Scr.T149, 014007 (2012). [CrossRef]
  11. D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: From subluminal to superluminal light propagation,” Phys. Rev. A63,043818 (2001). [CrossRef]
  12. H. Sun, H. Guo, Y. Bai, D. Han, S. Fan, and X. Chen, “Light propagation from subluminal to superluminal in a three-level Lambda-type system,” Phys. Lett. A335,68–75 (2005). [CrossRef]
  13. D. Jafari, M. Sahrai, H. Motavalli, and M. Mahmoudi, “Phase control of group velocity in a dielectric slab doped with three-level ladder-type atoms,” Phys. Rev. A84,063811 (2011). [CrossRef]
  14. J. Kou, R. Wan, Z. Kang, L. Jiang, L. Wang, Y. Jiang, and J. Gao, “Phase-dependent coherent population trapping and optical switching,” Phys. Rev. A84,063807 (2011). [CrossRef]
  15. W. Maichen, F. Renzoni, I. Mazets, E. Korsunsky, and L. Windholz, “Transient coherent population trapping in a closed loop interaction scheme,” Phys. Rev. A53,3444–3448 (1996). [CrossRef] [PubMed]
  16. E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms,” Phys. Rev. A60,4996–5009 (1999). [CrossRef]
  17. X. Fan, Z. Liu, Y. Liang, K. Jia, and D. Tong, “Phase control of probe response in a Doppler-broadened N-type four-level system,” Phys. Rev. A83,043805 (2011). [CrossRef]
  18. A. F. Huss, E. A. Korsunsky, and L. Windholz, “Phase control of electromagnetically induced transparency in a double-Λ system,” J. Mod. Opt.49,141–155 (2002). [CrossRef]
  19. H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, “Electromagnetically induced transparency controlled by a microwave field,” Phys. Rev. A80,023820 (2009). [CrossRef]
  20. D. Kosachiov, B. Matisov, and Yu. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt. Commun.85,209–212 (1991). [CrossRef]
  21. M. S. Shahriar and P. R. Hemmer, “Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction,” Phys. Rev. Lett.65,1865–1868 (1990). [CrossRef] [PubMed]
  22. T. Horrom, S. Balik, A. Lezama, M. D. Havey, and E. E. Mikhailov, “Polarization self-rotation in ultracold atomic 87Rb,” Phys. Rev. A83, 053850 (2011). [CrossRef]
  23. E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett.33,1213–1215 (2008). [CrossRef] [PubMed]
  24. S. Barreiro, P. Valente, H. Failache, and A. Lezama, “Polarization squeezing of light by single passage through an atomic vapor,” Phys. Rev. A84,033851 (2011). [CrossRef]
  25. W. Wasilewski, T. Fernholz, K. Jensen, L. S. Madsen, H. Krauter, C. Muschik, and E. S. Polzik, “Generation of two-mode squeezed and entangled light in a single temporal and spatial mode,” Opt. Express17,14444–14457 (2009). [CrossRef] [PubMed]
  26. I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light with integrated gain and large pulse delay,” Phys. Rev. Lett.99,173604 (2007). [CrossRef] [PubMed]
  27. W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, “Quantum noise limited and entanglement-assisted magnetometry,” Phys. Rev. Lett.104,133601 (2010). [CrossRef] [PubMed]
  28. B. Patton, O. O. Versolato, D. C. Hovde, E. Corsini, J. M. Higbie, and D. Budker, “A remotely interrogated all-optical 87Rb magnetometer,” Appl. Phys. Lett.101,083502 (2012). [CrossRef]
  29. N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing,” Phys. Rev. A83,063823 (2011). [CrossRef]
  30. M. Crescimanno and M. Hohensee, “N+CPT clock resonance,” J. Opt. Soc. Am. B25,2130–2139 (2008). [CrossRef]
  31. C. Hancox, M. Hohensee, M. Crescimanno, D. F. Phillips, and R. L. Walsworth, “Lineshape asymmetry for joint coherent population trapping and three-photon N resonances,” Opt. Lett.33,1536–1538 (2008). [CrossRef] [PubMed]
  32. M. Klein, M. Hohensee, D. F. Phillips, and R. L. Walsworth, “Electromagnetically induced transparency in paraffin-coated vapor cells,” Phys. Rev. A83,013826 (2011). [CrossRef]
  33. I. Novikova, R. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev.6,333–353 (2012). [CrossRef]
  34. Z. Xu, W. Qu, R. Gao, X. Hu, and Y. Xiao, “Linewidth of electromagnetically induced transparency under motional averaging in a coated vapor cell,” Chin. Phys. B22,033202 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited