OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11728–11746

Dressed multi-wave mixing process with Rydberg blockade

Huaibin Zheng, Yan Zhao, Chenzhi Yuan, Zhaoyang Zhang, Junling Che, Yiqi Zhang, Yunguang Zhang, and Yanpeng Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11728-11746 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the way to control multi-wave mixing (MWM) process in Rydberg atoms via the interaction between Rydberg blockade and light field dressing effect. Considering both of the primary and secondary blockades, we theoretically study the MWM process in both diatomic and quadratomic systems, in which the enhancement, suppression and avoided crossing can be affected by the atomic internuclear distance or external electric field intensity. In the diatomic system, we also can eliminate the primary blockade by the dressing effect. Such investigations have potential applications in quantum computing with Rydberg atom as the carrier of qubit.

© 2013 OSA

OCIS Codes
(020.5780) Atomic and molecular physics : Rydberg states
(030.1640) Coherence and statistical optics : Coherence
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Atomic and Molecular Physics

Original Manuscript: January 29, 2013
Revised Manuscript: March 14, 2013
Manuscript Accepted: March 15, 2013
Published: May 7, 2013

Huaibin Zheng, Yan Zhao, Chenzhi Yuan, Zhaoyang Zhang, Junling Che, Yiqi Zhang, Yunguang Zhang, and Yanpeng Zhang, "Dressed multi-wave mixing process with Rydberg blockade," Opt. Express 21, 11728-11746 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys.6(5), 382–388 (2010). [CrossRef]
  2. M. Saffman, T. G. Walker, and K. Mölmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys.82(3), 2313–2363 (2010). [CrossRef]
  3. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett.85(10), 2208–2211 (2000). [CrossRef] [PubMed]
  4. I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms in microscopic dipole traps,” Phys. Rev. A65(5), 052301 (2002). [CrossRef]
  5. K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes,” J. Phys. At. Mol. Opt. Phys.38(2), S295–S307 (2005). [CrossRef]
  6. J. Stanojevic, R. Côté, D. Tong, E. E. Eyler, and P. L. Gould, “Long-range potentials and (n−1)d+ns molecular resonances in an ultracold Rydberg gas,” Phys. Rev. A78(5), 052709 (2008). [CrossRef]
  7. S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, “Nonlocal nonlinear optics in cold Rydberg gases,” Phys. Rev. Lett.107(15), 153001 (2011). [CrossRef] [PubMed]
  8. A. Reinhard, T. C. Liebisch, B. Knuffman, and G. Raithel, “Level shifts of rubidium Rydberg states due to binary interactions,” Phys. Rev. A75(3), 032712 (2007). [CrossRef]
  9. M. Marinescu and A. Dalgarno, “Dispersion forces and long-range electronic transition dipole moments of alkali-metal dimer excited states,” Phys. Rev. A52(1), 311–328 (1995). [CrossRef] [PubMed]
  10. D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett.93(6), 063001 (2004). [CrossRef] [PubMed]
  11. J. Han and T. F. Gallagher, “Millimeter-wave rubidium Rydberg van der Waals spectroscopy,” Phys. Rev. A79(5), 053409 (2009). [CrossRef]
  12. E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys.5(2), 110–114 (2009). [CrossRef]
  13. D. Comparat and P. Pillet, “Dipole blockade in a cold Rydberg atomic sample,” J. Opt. Soc. Am. B27(6), A208–A232 (2010). [CrossRef]
  14. A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of twoindividual atoms in the Rydberg blockade regime,” Nat. Phys.5(2), 115–118 (2009). [CrossRef]
  15. T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, “Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms,” Phys. Rev. Lett.97(8), 083003 (2006). [CrossRef] [PubMed]
  16. M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett.87(3), 037901 (2001). [CrossRef] [PubMed]
  17. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today50(7), 36–42 (1997). [CrossRef]
  18. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005). [CrossRef]
  19. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  20. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett.87(7), 073601 (2001). [CrossRef] [PubMed]
  21. J. Kou, R. G. Wan, Z. H. Kang, H. H. Wang, L. Jiang, X. J. Zhang, Y. Jiang, and J. Y. Gao, “EIT-assisted large cross-Kerr nonlinearity in a four-level inverted-Y atomic system,” J. Opt. Soc. Am. B27(10), 2035–2039 (2010). [CrossRef]
  22. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett.93(18), 183601 (2004). [CrossRef] [PubMed]
  23. Y. Wu, J. Saldana, and Y. F. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A67(1), 013811 (2003). [CrossRef]
  24. Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett.99(12), 123603 (2007). [CrossRef] [PubMed]
  25. Y. P. Zhang and M. Xiao, “Enhancement of six-wave mixing by atomic coherence in a four-level inverted Y system,” Appl. Phys. Lett.90(11), 111104 (2007). [CrossRef]
  26. Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. Fu, L. A. Wu, and P. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett.97(19), 193904 (2006). [CrossRef] [PubMed]
  27. H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. Depaola, T. Amthor, M. Weidemüller, S. Sevinçli, and T. Pohl, “Coherent population trapping with controlled interparticle interactions,” Phys. Rev. Lett.104(17), 173602 (2010). [CrossRef] [PubMed]
  28. D. Møller, L. B. Madsen, and K. Mølmer, “Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage,” Phys. Rev. Lett.100(17), 170504 (2008). [CrossRef] [PubMed]
  29. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett.98(11), 113003 (2007). [CrossRef] [PubMed]
  30. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, “Antiblockade in Rydberg excitation of an ultracold lattice gas,” Phys. Rev. Lett.98(2), 023002 (2007). [CrossRef] [PubMed]
  31. T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, “Evidence of antiblockade in an ultracold Rydberg gas,” Phys. Rev. Lett.104(1), 013001 (2010). [CrossRef] [PubMed]
  32. E. Brekke, J. O. Day, and T. G. Walker, Phys. “Four-wave mixing in ultracold atoms using intermediate Rydberg states,” Phys. Rev. A78(6), 063830 (2008). [CrossRef]
  33. A. Kölle, G. Epple, H. Kübler, R. Löw, and T. Pfau, “Four-wave mixing involving Rydberg states in thermal vapor,” Phys. Rev. A85(6), 063821 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited