OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11783–11793

Optical forces in twisted split-ring-resonator dimer stereometamaterials

Chaojun Tang, Qiugu Wang, Fanxin Liu, Zhuo Chen, and Zhenlin Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11783-11793 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2909 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate the optical forces in stereometamaterials composed of two-dimensional arrays of two spatially stacked split ring resonators with a twisted angle. At the hybridized magnetic resonances, we obtain both attractive and repulsive relative optical forces, which can be further exploited to control the separation between the two split ring resonators. Due to the strongest inductive coupling achieved for a twist angle of 180°, an attractive relative force as high as ~1200 piconewtons is realized at illumination intensities of 50 mW/µm2. We show that a quasi-static dipole-dipole interaction model could predict well the characteristic and magnitude of the relative optical forces. We also demonstrate that although the optical force exerted on each of the split ring resonators could be oriented in a direction opposite to the propagation wave vector, the mass center of the two resonators is always pushed away from the light source.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:

Original Manuscript: March 6, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: May 1, 2013
Published: May 7, 2013

Chaojun Tang, Qiugu Wang, Fanxin Liu, Zhuo Chen, and Zhenlin Wang, "Optical forces in twisted split-ring-resonator dimer stereometamaterials," Opt. Express 21, 11783-11793 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. S. Chu, “Laser manipulation of atoms and particles,” Science253(5022), 861–866 (1991). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  4. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  5. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics5(6), 318–321 (2011). [CrossRef] [PubMed]
  6. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  7. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett.63(12), 1233–1236 (1989). [CrossRef] [PubMed]
  8. R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a single-beam gradient-force optical trap for dielectric particles in air,” Opt. Lett.22(11), 816–818 (1997). [CrossRef] [PubMed]
  9. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett.82(23), 4623–4626 (1999). [CrossRef]
  10. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express13(20), 8286–8295 (2005). [CrossRef] [PubMed]
  11. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett.30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  12. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett.97(2), 023903 (2006). [CrossRef] [PubMed]
  13. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009). [CrossRef]
  14. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol.4(8), 510–513 (2009). [CrossRef] [PubMed]
  15. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics3(8), 478–483 (2009). [CrossRef]
  16. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009). [CrossRef] [PubMed]
  17. G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express19(3), 2782–2790 (2011). [CrossRef] [PubMed]
  18. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics1(7), 416–422 (2007). [CrossRef]
  19. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103(22), 223901 (2009). [CrossRef] [PubMed]
  20. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics3(8), 478–483 (2009). [CrossRef]
  21. T. Stomeo, M. Grande, G. Rainò, A. Passaseo, A. D’Orazio, R. Cingolani, A. Locatelli, D. Modotto, C. De Angelis, and M. De Vittorio, “Optical filter based on two coupled PhC GaAs-membranes,” Opt. Lett.35(3), 411–413 (2010). [CrossRef] [PubMed]
  22. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010). [CrossRef]
  23. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett.102(4), 043904 (2009). [CrossRef] [PubMed]
  24. R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and Optical Forces between Au Bipyramidal Nanoparticle Dimers,” J. Phys. Chem. A113(16), 4408–4415 (2009). [CrossRef] [PubMed]
  25. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett.89(24), 246802 (2002). [CrossRef] [PubMed]
  26. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express17(22), 19996–20011 (2009). [CrossRef] [PubMed]
  27. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011). [CrossRef] [PubMed]
  28. Y. He, S. He, J. Gao, and X. Yang, “Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Express20(20), 22372–22382 (2012). [CrossRef] [PubMed]
  29. P. C. Chaumet, A. Rahmani, F. Zolla, and A. Nicolet, “Electromagnetic forces on a discrete spherical invisibility cloak under time-harmonic illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(5), 056602 (2012). [CrossRef] [PubMed]
  30. V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, “Enhancing optical gradient forces with metamaterials,” Phys. Rev. Lett.110(5), 057401 (2013). [CrossRef] [PubMed]
  31. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces,” Phys. Rev. B85(20), 205123 (2012). [CrossRef]
  32. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]
  33. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30(24), 3356–3358 (2005). [CrossRef] [PubMed]
  34. H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express15(3), 1076–1083 (2007). [CrossRef] [PubMed]
  35. J. Pan, Z. Chen, Z. D. Yan, Z. S. Cao, P. Zhan, N. B. Ming, and Z. L. Wang, “Symmetric and anti-symmetric magnetic resonances in double-triangle nanoparticle arrays fabricated via angle-resolved nanosphere lithography,” AIP Adv.1(4), 042114 (2011). [CrossRef]
  36. R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express18(25), 25665–25676 (2010). [CrossRef] [PubMed]
  37. M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater.11(1), 30–33 (2011). [CrossRef] [PubMed]
  38. M. Liu, D. A. Powell, and I. V. Shadrivov, “Chiral meta-atoms rotated by light,” Appl. Phys. Lett.101(3), 031105 (2012). [CrossRef]
  39. M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Twists and turns for metamaterials,” arXiv:1301.5960 [physics.optics].
  40. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009). [CrossRef]
  41. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  43. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  44. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74(3), 033402 (2006). [CrossRef]
  45. H. F. Harmuth, Sequency Theory-Foundations and Applications (Academic Press, 1977).
  46. D. A. Powell, K. Hannam, I. V. Shadrivov, and Y. S. Kivshar, “Near-field interaction of twisted split-ring resonators,” Phys. Rev. B83(23), 235420 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited