OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11794–11807

All-optical, thermo-optical path length modulation based on the vanadium-doped fibers

Ziga Matjasec, Stanislav Campelj, and Denis Donlagic  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 11794-11807 (2013)
http://dx.doi.org/10.1364/OE.21.011794


View Full Text Article

Enhanced HTML    Acrobat PDF (2192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump’s power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber’s diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

© 2013 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4080) Fiber optics and optical communications : Modulation
(060.5060) Fiber optics and optical communications : Phase modulation
(140.6810) Lasers and laser optics : Thermal effects
(230.4110) Optical devices : Modulators

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 21, 2013
Revised Manuscript: April 26, 2013
Manuscript Accepted: April 29, 2013
Published: May 7, 2013

Citation
Ziga Matjasec, Stanislav Campelj, and Denis Donlagic, "All-optical, thermo-optical path length modulation based on the vanadium-doped fibers," Opt. Express 21, 11794-11807 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-11794


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Beheim, “Remote displacement measurement using a passive interferometer with a fiber-optic link,” Appl. Opt.24(15), 2335–2340 (1985). [CrossRef] [PubMed]
  2. Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Meas. Sci. Technol.7(7), 981–999 (1996). [CrossRef]
  3. L. B. Yuan, Q. B. Li, Y. J. Liang, J. Yang, and Z. H. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A Phys.94(1-2), 25–31 (2001). [CrossRef]
  4. X. M. Zhang, Y. X. Liu, H. Bae, C. Pang, and M. Yu, “Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors,” Opt. Express17(26), 23965–23974 (2009). [CrossRef] [PubMed]
  5. H. S. Choi, H. F. Taylor, and C. E. Lee, “High-performance fiber-optic temperature sensor using low-coherence interferometry,” Opt. Lett.22(23), 1814–1816 (1997). [CrossRef] [PubMed]
  6. B. T. Meggitt, C. J. Hall, and K. Weir, “An all fibre white light interferometric strain measurement system,” Sens. Actuators A Phys.79(1), 1–7 (2000). [CrossRef]
  7. D. Donlagic and E. Cibula, “An all-fiber scanning interferometer with a large optical path length difference,” Opt. Lasers Eng.43(6), 619–623 (2005). [CrossRef]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  9. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  10. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express15(12), 7103–7116 (2007). [CrossRef] [PubMed]
  11. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express14(19), 8675–8684 (2006). [CrossRef] [PubMed]
  12. J. Tratnik, L. Pavlovic, B. Batagelj, P. Lemut, P. Ritosa, M. Ferianis, and M. Vidmar, “Fiber length compensated transmission of 2998.01 MHz RF signal with femtosecond precision,” Microw. Opt. Technol. Lett.53(7), 1553–1555 (2011). [CrossRef]
  13. W. Z. Li and J. P. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010). [CrossRef]
  14. B. J. White, J. P. Davis, L. C. Bobb, H. D. Krumboltz, and D. C. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol.5(9), 1169–1175 (1987). [CrossRef]
  15. S. Gao, A. P. Zhang, H. Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express19(11), 10124–10130 (2011). [CrossRef] [PubMed]
  16. C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt.3(10), 1182–1186 (1964). [CrossRef]
  17. D. C. Hanna, M. J. McCarthy, and P. J. Suni, “Thermal considerations in longitudinally pumped fiber and miniature bulk lasers,” Proc. SPIE1171, 160–167 (1990). [CrossRef]
  18. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol.16(6), 1013–1023 (1998). [CrossRef]
  19. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001). [CrossRef]
  20. N. A. Brilliant and K. Lagonik, “Thermal effects in a dual-clad ytterbium fiber laser,” Opt. Lett.26(21), 1669–1671 (2001). [CrossRef] [PubMed]
  21. M. Gorjan, M. Marincek, and M. Copic, “Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers,” Opt. Express17(22), 19814–19822 (2009). [CrossRef] [PubMed]
  22. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, “Introduction to convection,” in Fundamentals of heat and mass transfere, J. Hayton, ed. (John Wiley & Sons, 2007).
  23. A. H. Rose, “Devitrification in annealed optical fiber,” J. Lightwave Technol.15(5), 808–814 (1997). [CrossRef]
  24. P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974). [CrossRef]
  25. M. K. Davis and M. J. F. Digonnet, “Measurements of thermal effects in fibers doped with cobalt and vanadium,” J. Lightwave Technol.18(2), 161–165 (2000). [CrossRef]
  26. B. Lenardic, M. Kveder, H. Guillon, and S. Bonnafous, “Fabrication of specialty optical fibers using flash vaporization method,” Proc. SPIE7134, 71341K, 71341K-11 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited