OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11808–11818

Fluorescent stereo microscopy for 3D surface profilometry and deformation mapping

Zhenxing Hu, Huiyang Luo, Yingjie Du, and Hongbing Lu  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11808-11818 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, mechanobiology has received increased attention. For investigation of biofilm and cellular tissue, measurements of the surface topography and deformation in real-time are a pre-requisite for understanding the growth mechanisms. In this paper, a novel three-dimensional (3D) fluorescent microscopic method for surface profilometry and deformation measurements is developed. In this technique a pair of cameras are connected to a binocular fluorescent microscope to acquire micrographs from two different viewing angles of a sample surface doped or sprayed with fluorescent microparticles. Digital image correlation technique is used to search for matching points in the pairing fluorescence micrographs. After calibration of the system, the 3D surface topography is reconstructed from the pair of planar images. When the deformed surface topography is compared with undeformed topography using fluorescent microparticles for movement tracking of individual material points, the full field deformation of the surface is determined. The technique is demonstrated on topography measurement of a biofilm, and also on surface deformation measurement of the biofilm during growth. The use of 3D imaging of the fluorescent microparticles eliminates the formation of bright parts in an image caused by specular reflections. The technique is appropriate for non-contact, full-field and real-time 3D surface profilometry and deformation measurements of materials and structures at the microscale.

© 2013 OSA

OCIS Codes
(150.6910) Machine vision : Three-dimensional sensing
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(160.1435) Materials : Biomaterials

ToC Category:

Original Manuscript: March 22, 2013
Revised Manuscript: April 26, 2013
Manuscript Accepted: April 26, 2013
Published: May 7, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Zhenxing Hu, Huiyang Luo, Yingjie Du, and Hongbing Lu, "Fluorescent stereo microscopy for 3D surface profilometry and deformation mapping," Opt. Express 21, 11808-11818 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Asally, M. Kittisopikul, P. Rué, Y. Du, Z. Hu, T. Çağatay, A. B. Robinson, H. Lu, J. Garcia-Ojalvo, and G. M. Süel, “Localized cell death focuses mechanical forces during 3D patterning in a biofilm,” Proc. Natl. Acad. Sci. U.S.A.109(46), 18891–18896 (2012). [CrossRef] [PubMed]
  2. M. T. Raimondi, E. Bonacina, G. Candiani, M. Laganà, E. Rolando, G. Talò, D. Pezzoli, R. D’Anchise, R. Pietrabissa, and M. Moretti, “Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model,” Biomech. Model. Mechanobiol.10(2), 259–268 (2011). [CrossRef] [PubMed]
  3. S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions,” Proc. Natl. Acad. Sci. U.S.A.106(52), 22108–22113 (2009). [CrossRef] [PubMed]
  4. U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys.59(10), 3318–3327 (1986). [CrossRef]
  5. Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater.8(3), 181–185 (2007). [CrossRef]
  6. J. P. Kerrigan, K. Yamazaki, R. K. Meyer, T. Mori, Y. Otake, E. Outa, M. Umezu, H. S. Borovetz, R. L. Kormos, B. P. Griffith, H. Koyanagi, and J. F. Antaki, “High-resolution fluorescent particle-tracking flow visualization within an intraventricular axial flow left ventricular assist device,” Artif. Organs20(5), 534–540 (1996). [CrossRef] [PubMed]
  7. J. Sakakibara, K. Hishida, and M. Maeda, “Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence),” Int. J. Heat Mass Tran.40(13), 3163–3176 (1997). [CrossRef]
  8. C. M. Wells and M. Parsons, Cell Migration: Developmental Methods and Protocols (Humana, 2011).
  9. G. V. Soni, B. M. Jaffar Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking of correlated bacterial dynamics,” Biophys. J.84(4), 2634–2637 (2003). [CrossRef] [PubMed]
  10. A. D. Dinsmore, E. R. Weeks, V. Prasad, A. C. Levitt, and D. A. Weitz, “Three-dimensional confocal microscopy of colloids,” Appl. Opt.40(24), 4152–4159 (2001). [CrossRef] [PubMed]
  11. O. Loh, R. Lam, M. Chen, N. Moldovan, H. Huang, D. Ho, and H. D. Espinosa, “Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds,” Small5(14), 1667–1674 (2009). [CrossRef] [PubMed]
  12. M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids38(4), 461–465 (2005). [CrossRef]
  13. T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros, and N. R. Sottos, “Fluorescent image correlation for nanoscale deformation measurements,” Small2(5), 631–635 (2006). [CrossRef] [PubMed]
  14. A. Hamilton, N. Sottos, and S. White, “Local strain concentrations in a microvascular network,” Exp. Mech.50(2), 255–263 (2010). [CrossRef]
  15. B. A. Samuel, M. C. Demirel, and A. Haque, “High resolution deformation and damage detection using fluorescent dyes,” J. Micromech. Microeng.17(11), 2324–2327 (2007). [CrossRef]
  16. C. Franck, S. Hong, S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech.47(3), 427–438 (2007). [CrossRef]
  17. B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech.39(3), 217–226 (1999). [CrossRef]
  18. Z. Hu, H. Luo, W. Young, and H. Lu, “Three-dimensional internal large deformation measurement of PMI foam using incremental digital volume correlation,” presented in International Mechanical Engineering Congress and Exposition, Houston, USA, 9–15 Nov. 2012.
  19. S. Li, Z. Xu, I. Reading, S. F. Yoon, Z. P. Fang, and J. Zhao, “Three dimensional sidewall measurements by laser fluorescent confocal microscopy,” Opt. Express16(6), 4001–4014 (2008). [CrossRef] [PubMed]
  20. R. Gräf, J. Rietdorf, and T. Zimmermann, “Live Cell Spinning Disk Microscopy,” in Microscopy Techniques, J. Rietdorf, ed. (Springer Berlin Heidelberg, 2005), pp. 57–75.
  21. H. Luo, C. Dai, R. Z. Gan, and H. Lu, “Measurement of young’s modulus of human tympanic membrane at high strain rates,” J. Biomech. Eng.131(6), 064501 (2009). [CrossRef] [PubMed]
  22. H. Luo, H. Lu, C. Dai, and R. Z. Gan, “A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates,” Int. J. Exp. Comp. Biomech.1(1), 1–22 (2009). [CrossRef]
  23. A. Boyde, “Combining confocal and conventional modes in tandem scanning reflected light-microscopy,” Scanning11(3), 147–152 (1989). [CrossRef]
  24. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt.33(31), 7334–7338 (1994). [CrossRef] [PubMed]
  25. J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng.47(3-4), 282–291 (2009). [CrossRef]
  26. W. Chen, J. Z. Zhang, and A. G. Joly, “Optical properties and potential applications of doped semiconductor nanoparticles,” J. Nanosci. Nanotechnol.4(8), 919–947 (2004). [CrossRef] [PubMed]
  27. W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress-analysis,” Opt. Eng.21(3), 427–432 (1982). [CrossRef]
  28. M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill, “Determination of displacements using an improved digital correlation method,” Image Vis. Comput.1(3), 133–139 (1983). [CrossRef]
  29. H. Lu, G. Vendroux, and W. Knauss, “Surface deformation measurements of a cylindrical specimen by digital image correlation,” Exp. Mech.37(4), 433–439 (1997). [CrossRef]
  30. H. Lu and P. Cary, “Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient,” Exp. Mech.40(4), 393–400 (2000). [CrossRef]
  31. P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech.33(2), 123–132 (1993). [CrossRef]
  32. Y. Wang, Error Assessment in 3D Computer Vision Ph.D Dissertations, (University of South Carolina, 2010).
  33. X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error Assessment in Stereo-based Deformation Measurements,” Exp. Mech.51(4), 423–441 (2011). [CrossRef]
  34. Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech.51(4), 405–422 (2011). [CrossRef]
  35. M. A. Sutton, T. L. Chae, J. L. Turner, and H. A. Bruck, “Development of a computer vision methodology for the analysis of surface deformations in magnified images,” MiCon 90: Adv. in Video Tech. for Microstruc.Con.l, 109–131 (1990).
  36. M. Sutton, J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer-Verlag, 2009).
  37. H. Schreier, D. Garcia, and M. Sutton, “Advances in light microscope stereo vision,” Exp. Mech.44(3), 278–288 (2004). [CrossRef]
  38. M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A84A(1), 178–190 (2008). [CrossRef] [PubMed]
  39. Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE T. Pattern Anal.22(11), 1330–1334 (2000). [CrossRef]
  40. J.-Y. Bougue, “Camera calibration toolbox for Matlab” (2010). http://www.vision.caltech.edu/bouguetj/calib_doc .
  41. H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial-differential correlation,” Exp. Mech.29(3), 261–267 (1989). [CrossRef]
  42. B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt.48(8), 1535–1542 (2009). [CrossRef] [PubMed]
  43. Y. L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Trans. Image Process.9(10), 1723–1730 (2000). [CrossRef] [PubMed]
  44. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art Of Scientific Computing (Cambridge University, 2007).
  45. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nat. Rev. Microbiol.2(2), 95–108 (2004). [CrossRef] [PubMed]
  46. G. Lear and G. D. Lewis, Microbial Biofilms: Current Research and Applications (Caister Academic, 2012).
  47. V. Clausnitzer and J. W. Hopmans, “Determination of phase-volume fractions from tomographic measurements in two-phase systems,” Adv. Water Resour.22(6), 577–584 (1999). [CrossRef]
  48. T. Hua, H. Xie, S. Wang, Z. Hu, P. Chen, and Q. Zhang, “Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation,” Opt. Laser Technol.43(1), 9–13 (2011). [CrossRef]
  49. Z. Hu, H. Xie, J. Lu, H. Wang, and J. Zhu, “Error evaluation technique for three-dimensional digital image correlation,” Appl. Opt.50(33), 6239–6247 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited