OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11827–11838

Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study

Slimane Laref, Jiangrong Cao, Abu Asaduzzaman, Keith Runge, Pierre Deymier, Richard W. Ziolkowski, Mamoru Miyawaki, and Krishna Muralidharan  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11827-11838 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Physical properties of materials are known to be different from the bulk at the nanometer scale. In this context, the dependence of optical properties of nanometric gold thin films with respect to film thickness is studied using density functional theory (DFT). We find that the in-plane plasma frequency of the gold thin film decreases with decreasing thickness and that the optical permittivity tensor is highly anisotropic as well as thickness dependent. Quantitative knowledge of planar metal film permittivity’s thickness dependence can improve the accuracy and reliability of the designs of plasmonic devices and electromagnetic metamaterials. The strong anisotropy observed may become an alternative method of realizing indefinite media.

© 2013 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(310.0310) Thin films : Thin films
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Thin Films

Original Manuscript: October 11, 2012
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 15, 2013
Published: May 7, 2013

Slimane Laref, Jiangrong Cao, Abu Asaduzzaman, Keith Runge, Pierre Deymier, Richard W. Ziolkowski, Mamoru Miyawaki, and Krishna Muralidharan, "Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study," Opt. Express 21, 11827-11838 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng.5(1), 285–292 (2003). [CrossRef] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides,” Opt. Express12(22), 5481–5486 (2004). [CrossRef] [PubMed]
  4. C. Dellagiacoma, T. Lasser, O. J. F. Martin, A. Degiron, J. J. Mock, and D. R. Smith, “Simulation of complex plasmonic circuits including bends,” Opt. Express19(20), 18979–18988 (2011). [CrossRef] [PubMed]
  5. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968). [CrossRef]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  8. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483(7390), 421–427 (2012). [CrossRef] [PubMed]
  9. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  10. J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Koch, Optical Properties of Metals II: Noble Metals, Aluminum, Lanthanides, and Actinides (ZAED, 1981).
  11. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008). [CrossRef] [PubMed]
  12. U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Phys.224(4), 307–323 (1969). [CrossRef]
  13. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  14. Y. He and T. Zeng, “First-principle study and model of dielectric functions of silver nanoparticles,” J. Phys. Chem. C114(42), 18023–18030 (2010). [CrossRef]
  15. K. Glantschnig and C. Ambrosch-Draxl, “Relativistic effects on the linear optical properties of Au, Pt, Pb and W,” New J. Phys.12(10), 103048 (2010). [CrossRef]
  16. J. Harl, G. Kresse, L. D. Sun, M. Hohage, and L. Zeppenfeld, “Ab initio reflectance difference spectra of the bare and adsorbate covered Cu(110) surfaces,” Phys. Rev. B76(3), 035436 (2007). [CrossRef]
  17. J. Yan, K. W. Jacobsen, and K. Y. Thygesen, “First principles study of surface plasmons on Ag(111) and H/Ag(111),” Phys. Rev. B84(23), 235430 (2011). [CrossRef]
  18. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. Roy. Soc. London A203(359-371), 385–420 (1904). [CrossRef]
  19. D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett.90(7), 077405 (2003). [CrossRef] [PubMed]
  20. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  21. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  22. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012). [CrossRef] [PubMed]
  23. G. Onida, W. G. Schmidt, O. Pulci, M. Palummo, A. Marini, C. Hogan, and R. Del Sole, “Theory for modeling the optical properties of surfaces,” Phys. Status Solidi188(4), 1233–1242 (2001) (a). [CrossRef]
  24. G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys.74(2), 601–659 (2002). [CrossRef]
  25. G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” J. Comput. Mater. Sci6(1), 15–50 (1996). [CrossRef]
  26. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter54(16), 11169–11186 (1996). [CrossRef] [PubMed]
  27. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B59(3), 1758–1775 (1999). [CrossRef]
  28. J. Harl, “The linear response function in density functional theory: Optical spectra and improved description of the electron correlation,” Ph.D Dissertation submitted to Universitat Wien (2008).
  29. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996). [CrossRef] [PubMed]
  30. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B13(12), 5188–5192 (1976). [CrossRef]
  31. S. Link and M. A. El-Sayed, “Shape and size-dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem.19(3), 409–453 (2000). [CrossRef]
  32. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem C.Lett113(8), 3041–3045 (2009). [CrossRef]
  33. J. S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun1(9), 150 (2010), doi:. [CrossRef] [PubMed]
  34. B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008). [CrossRef] [PubMed]
  35. M. Hövel, B. Gompf, and M. Dressel, “Electrodynamics of ultrathin gold films at the insulator-to-metal transition,” Thin Solid Films519(9), 2955–2958 (2011). [CrossRef]
  36. X. Wang, K.-P. Chen, M. Zhao, and D. D. Nolte, “Refractive index and dielectric constant transition of ultra-thin gold from cluster to films,” Opt. Express18(24), 24859–24867 (2010). [CrossRef] [PubMed]
  37. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005). [CrossRef]
  38. S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2(2), 131–138 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited