OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11839–11851

Enhanced optical forces in integrated hybrid plasmonic waveguides

Huan Li, Jong W. Noh, Yu Chen, and Mo Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 11839-11851 (2013)
http://dx.doi.org/10.1364/OE.21.011839


View Full Text Article

Enhanced HTML    Acrobat PDF (1969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate gradient optical forces in metal-dielectric hybrid plasmonic waveguides (HPWG) for the first time. The magnitude of optical force is quantified through excitation of the nanomechanical vibration of the suspended waveguides. Integrated Mach-Zehnder interferometry is utilized to transduce the mechanical motion and characterize the propagation loss of the HPWG. Compared with theory, the experimental results have confirmed the optical force enhancement, but also suggested a significantly higher optical loss in HPWG. The excessive loss is attributed to metal surface roughness and other non-idealities in the device fabrication process.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(220.4880) Optical design and fabrication : Optomechanics
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: January 22, 2013
Revised Manuscript: April 14, 2013
Manuscript Accepted: April 22, 2013
Published: May 7, 2013

Citation
Huan Li, Jong W. Noh, Yu Chen, and Mo Li, "Enhanced optical forces in integrated hybrid plasmonic waveguides," Opt. Express 21, 11839-11851 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-11839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  2. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature456(7221), 480–484 (2008). [CrossRef] [PubMed]
  3. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics3(8), 478–483 (2009). [CrossRef]
  4. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009). [CrossRef] [PubMed]
  5. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]
  6. F. Marquardt and S. Girvin, “Optomechanics,” Physics2, 40 (2009). [CrossRef]
  7. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett.97(24), 243905 (2006). [CrossRef] [PubMed]
  8. A. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett.107(6), 063602 (2011). [CrossRef] [PubMed]
  9. M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol.4(6), 377–382 (2009). [CrossRef] [PubMed]
  10. K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett.11(2), 791–797 (2011). [CrossRef] [PubMed]
  11. M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol.6(11), 726–732 (2011). [CrossRef] [PubMed]
  12. H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity optomechanics for all-optical amplification of radio frequency signals,” Nat Commun3, 1091 (2012). [CrossRef] [PubMed]
  13. K. Y. Fong, W. H. P. Pernice, M. Li, and H. X. Tang, “Tunable optical coupler controlled by optical gradient forces,” Opt. Express19(16), 15098–15108 (2011). [CrossRef] [PubMed]
  14. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009). [CrossRef]
  15. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482(7383), 63–67 (2012). [CrossRef] [PubMed]
  16. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012). [CrossRef]
  17. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  18. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  19. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011). [CrossRef] [PubMed]
  20. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano5(4), 2831–2838 (2011). [CrossRef] [PubMed]
  21. C. Huang and L. Zhu, “Enhanced optical forces in 2D hybrid and plasmonic waveguides,” Opt. Lett.35(10), 1563–1565 (2010). [CrossRef] [PubMed]
  22. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011). [CrossRef]
  23. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol.5(8), 570–573 (2010). [CrossRef] [PubMed]
  24. P. T. Rakich, M. A. Popović, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express17(20), 18116–18135 (2009). [CrossRef] [PubMed]
  25. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett.30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  26. W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express17(3), 1806–1816 (2009). [CrossRef] [PubMed]
  27. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  28. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009). [CrossRef] [PubMed]
  29. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005). [CrossRef] [PubMed]
  30. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008). [CrossRef]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  32. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).
  33. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon Press, 1984).
  34. M. V. Salapaka, H. S. Bergh, J. Lai, A. Majumdar, and E. McFarland, “Multi-mode noise analysis of cantilevers for scanning probe microscopy,” J. Appl. Phys.81(6), 2480 (1997). [CrossRef]
  35. S. Timoshenko, Vibration Problems in Engineering, 2nd ed. (D. Van Nostrand company, Inc., 1937).
  36. M. A. Mohammad, K. Koshelev, T. Fito, D. A. Z. Zheng, M. Stepanova, and S. Dew, “Study of development processes for ZEP-520 as a high-resolution positive and negative tone electron beam lithography resist,” Jpn. J. Appl. Phys.51, 06FC05 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited