OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11862–11868

All-optical bistability and switching near the Dirac point of a 2-D photonic crystal.

Nadia Mattiucci, Mark J. Bloemer, and Giuseppe D’Aguanno  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 11862-11868 (2013)
http://dx.doi.org/10.1364/OE.21.011862


View Full Text Article

Enhanced HTML    Acrobat PDF (2388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate all-optical switching at the guided mode resonances originating near the Dirac point of a finite, 2-D photonic crystal consisting of a square lattice of dielectric columns possessing a cubic nonlinearity. The peculiar field localization properties of these Dirac-point guided mode resonances conspire to yield extremely low switching threshold at near-to-normal incidence for remarkably low filling factors of the nonlinear material.

© 2013 OSA

OCIS Codes
(230.4320) Optical devices : Nonlinear optical devices
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 13, 2013
Revised Manuscript: May 2, 2013
Manuscript Accepted: May 2, 2013
Published: May 8, 2013

Citation
Nadia Mattiucci, Mark J. Bloemer, and Giuseppe D’Aguanno, "All-optical bistability and switching near the Dirac point of a 2-D photonic crystal.," Opt. Express 21, 11862-11868 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-11862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals,Molding the Flow of Light. (Princeton University, 1995).
  4. J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals, (Springer, 2005).
  5. A. Scherer, T. Yoshie, M. Loncar, J. Vuckovic, and K. Okamoto, “Photonic Crystal Nanocavities for Efficient Light Confinement and Emission,” J. Korean Phys. Soc.42, 768–773 (2003).
  6. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  7. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature386(6621), 143–149 (1997). [CrossRef]
  8. S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photonics Nanostruct. Fundam. Appl.3(1), 10–18 (2005). [CrossRef]
  9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  10. A. H. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic processes of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  11. F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett.100(1), 013904 (2008). [CrossRef] [PubMed]
  12. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A78(3), 033834 (2008). [CrossRef]
  13. R. A. Sepkhanov, Ya. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A75(6), 063813 (2007). [CrossRef]
  14. X. Zhang, “Observing Zitterbewegung for Photons near the Dirac Point of a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett.100(11), 113903 (2008). [CrossRef] [PubMed]
  15. M. Diem, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point in hexagonal photonic crystals,” Physica B405(14), 2990–2995 (2010). [CrossRef]
  16. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011). [CrossRef] [PubMed]
  17. K. Sakoda, “Double Dirac cones in triangular-lattice metamaterials,” Opt. Express20(9), 9925–9939 (2012). [CrossRef] [PubMed]
  18. G. D’Aguanno, N. Mattiucci, C. Conti, and M. J. Bloemer, “Field localization and enhancement near the Dirac point of a finite defectless photonic crystal,” Phys. Rev. B87(8), 085135 (2013). [CrossRef]
  19. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A13(5), 1024–1035 (1996). [CrossRef]
  20. G. D'Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ(2) interactions,” Phys. Rev. E64, 16609 (2001).
  21. P. Vicent, N. Paraire, M. Neviere, A. Koster, and R. Reinisch, “Gratings in nonlinear optics and optical bistability,” J. Opt. Soc. Am. B2(7), 1106–1116 (1985). [CrossRef]
  22. Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic, 2003).
  23. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express15(15), 9205–9221 (2007). [CrossRef] [PubMed]
  24. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett.14(20), 1140–1142 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited